Frank Gondelaud, Christophe Bignon, Denis Ptchelkine, Frédéric Carrière, Sonia Longhi
{"title":"A conserved motif in Henipavirus P/V/W proteins drives the fibrillation of the W protein from Hendra virus.","authors":"Frank Gondelaud, Christophe Bignon, Denis Ptchelkine, Frédéric Carrière, Sonia Longhi","doi":"10.1002/pro.70085","DOIUrl":null,"url":null,"abstract":"<p><p>The Hendra (HeV) and Nipah (NiV) viruses are high-priority, biosafety level-4 pathogens that cause fatal neurological and respiratory disease. Their P gene encodes not only the P protein, an essential polymerase cofactor, but also the virulence factors V and W. We previously showed that the W protein of HeV (W<sup>HeV</sup>) forms amyloid-like fibrils and that one of its subdomains, PNT3, fibrillates in isolation. However, the fibrillation kinetics is much faster in the case of the full-length W<sup>HeV</sup> compared to PNT3, suggesting that another W<sup>HeV</sup> region contributes to the fibrillation process. In this work, we identified the region spanning residues 2-110 (PNT1) as the crucial region implicated in W<sup>HeV</sup> fibrillation. Through site-directed mutagenesis, combined with thioflavin T binding experiments and negative-staining transmission electron microscopy, we showed that a predicted cryptic amyloidogenic region (CAR) within PNT1 is the main driver of fibrillation and deciphered the underlying molecular mechanism. Using FTIR, we showed that PNT1 fibrils are enriched in cross β-sheets. Sequence alignment revealed conservation of the CAR across the Henipavirus genus and enabled the identification of a hitherto never reported pro-amyloidogenic motif. The ability to form fibrils was experimentally shown to be a common property shared by Henipavirus PNT1 proteins. Overall, this study sheds light on the molecular mechanisms underlying W<sup>HeV</sup> fibrillation and calls for future studies aimed at exploring the relevance of the newly identified pro-amyloidogenic motif as a valuable target for antiviral approaches.</p>","PeriodicalId":20761,"journal":{"name":"Protein Science","volume":"34 4","pages":"e70085"},"PeriodicalIF":4.5000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11917119/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pro.70085","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The Hendra (HeV) and Nipah (NiV) viruses are high-priority, biosafety level-4 pathogens that cause fatal neurological and respiratory disease. Their P gene encodes not only the P protein, an essential polymerase cofactor, but also the virulence factors V and W. We previously showed that the W protein of HeV (WHeV) forms amyloid-like fibrils and that one of its subdomains, PNT3, fibrillates in isolation. However, the fibrillation kinetics is much faster in the case of the full-length WHeV compared to PNT3, suggesting that another WHeV region contributes to the fibrillation process. In this work, we identified the region spanning residues 2-110 (PNT1) as the crucial region implicated in WHeV fibrillation. Through site-directed mutagenesis, combined with thioflavin T binding experiments and negative-staining transmission electron microscopy, we showed that a predicted cryptic amyloidogenic region (CAR) within PNT1 is the main driver of fibrillation and deciphered the underlying molecular mechanism. Using FTIR, we showed that PNT1 fibrils are enriched in cross β-sheets. Sequence alignment revealed conservation of the CAR across the Henipavirus genus and enabled the identification of a hitherto never reported pro-amyloidogenic motif. The ability to form fibrils was experimentally shown to be a common property shared by Henipavirus PNT1 proteins. Overall, this study sheds light on the molecular mechanisms underlying WHeV fibrillation and calls for future studies aimed at exploring the relevance of the newly identified pro-amyloidogenic motif as a valuable target for antiviral approaches.
期刊介绍:
Protein Science, the flagship journal of The Protein Society, is a publication that focuses on advancing fundamental knowledge in the field of protein molecules. The journal welcomes original reports and review articles that contribute to our understanding of protein function, structure, folding, design, and evolution.
Additionally, Protein Science encourages papers that explore the applications of protein science in various areas such as therapeutics, protein-based biomaterials, bionanotechnology, synthetic biology, and bioelectronics.
The journal accepts manuscript submissions in any suitable format for review, with the requirement of converting the manuscript to journal-style format only upon acceptance for publication.
Protein Science is indexed and abstracted in numerous databases, including the Agricultural & Environmental Science Database (ProQuest), Biological Science Database (ProQuest), CAS: Chemical Abstracts Service (ACS), Embase (Elsevier), Health & Medical Collection (ProQuest), Health Research Premium Collection (ProQuest), Materials Science & Engineering Database (ProQuest), MEDLINE/PubMed (NLM), Natural Science Collection (ProQuest), and SciTech Premium Collection (ProQuest).