Sha Sha , Moruo Zhang , Ting Ge , Lingzhen Song , Zhou Wu , Hongxing Zhang
{"title":"Behavioral outcomes in the bystander and demonstrator male mice following a socially-transferred allodynia paradigm","authors":"Sha Sha , Moruo Zhang , Ting Ge , Lingzhen Song , Zhou Wu , Hongxing Zhang","doi":"10.1016/j.physbeh.2025.114880","DOIUrl":null,"url":null,"abstract":"<div><div>The state of mechanical allodynia can be socially transferred from one individual to another during a brief empathetic contact. Our recent research has identified inter-individual differences in behavioral adaptations among bystander (BY) mice after a brief social contact with a demonstrator mouse experiencing complete Freund's Adjuvant (CFA)-induced inflammatory pain. However, the impact of the duration of social contact on the development of socially transferred allodynia is not yet clear. Additionally, it remains unknown whether social contact with different subgroups of BY mice differentially affects the pain behavior of CFA demonstrator mice. In the current study, we established a socially transferred allodynia paradigm with varying durations of social contact in male C57BL/6 J mice. We found that a 30-min or a longer social exposure to a CFA demonstrator mouse led to stable mechanical allodynia in naive BY mouse. As the duration of social contact increased, the persistence of the socially transferred allodynia also extended. Interestingly, the CFA demonstrator mice exhibited a partial reversal of mechanical allodynia when exposed to the BY mice for 24 h, but not for shorter durations. Surprisingly, this analgesic-like behavioral adaptation occurred only when the BY mice were susceptible to socially transferred allodynia. These findings demonstrate that behavioral adaptations in both BY and CFA demonstrator mice develop in a time-dependent manner. Additionally, the social contact-induced analgesic-like effect in CFA mice requires a specific cage mate that is susceptible to socially transferred allodynia.</div></div>","PeriodicalId":20201,"journal":{"name":"Physiology & Behavior","volume":"294 ","pages":"Article 114880"},"PeriodicalIF":2.4000,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiology & Behavior","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031938425000812","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The state of mechanical allodynia can be socially transferred from one individual to another during a brief empathetic contact. Our recent research has identified inter-individual differences in behavioral adaptations among bystander (BY) mice after a brief social contact with a demonstrator mouse experiencing complete Freund's Adjuvant (CFA)-induced inflammatory pain. However, the impact of the duration of social contact on the development of socially transferred allodynia is not yet clear. Additionally, it remains unknown whether social contact with different subgroups of BY mice differentially affects the pain behavior of CFA demonstrator mice. In the current study, we established a socially transferred allodynia paradigm with varying durations of social contact in male C57BL/6 J mice. We found that a 30-min or a longer social exposure to a CFA demonstrator mouse led to stable mechanical allodynia in naive BY mouse. As the duration of social contact increased, the persistence of the socially transferred allodynia also extended. Interestingly, the CFA demonstrator mice exhibited a partial reversal of mechanical allodynia when exposed to the BY mice for 24 h, but not for shorter durations. Surprisingly, this analgesic-like behavioral adaptation occurred only when the BY mice were susceptible to socially transferred allodynia. These findings demonstrate that behavioral adaptations in both BY and CFA demonstrator mice develop in a time-dependent manner. Additionally, the social contact-induced analgesic-like effect in CFA mice requires a specific cage mate that is susceptible to socially transferred allodynia.
期刊介绍:
Physiology & Behavior is aimed at the causal physiological mechanisms of behavior and its modulation by environmental factors. The journal invites original reports in the broad area of behavioral and cognitive neuroscience, in which at least one variable is physiological and the primary emphasis and theoretical context are behavioral. The range of subjects includes behavioral neuroendocrinology, psychoneuroimmunology, learning and memory, ingestion, social behavior, and studies related to the mechanisms of psychopathology. Contemporary reviews and theoretical articles are welcomed and the Editors invite such proposals from interested authors.