Brianna M Woodbury, Rebecca L Newcomer, Makayla N Leroux, Andrei T Alexandrescu, Carolyn M Teschke
{"title":"Templated trimerization of the phage L decoration protein on capsids.","authors":"Brianna M Woodbury, Rebecca L Newcomer, Makayla N Leroux, Andrei T Alexandrescu, Carolyn M Teschke","doi":"10.1002/pro.70089","DOIUrl":null,"url":null,"abstract":"<p><p>The 134-residue phage L decoration protein (Dec) forms a capsid-stabilizing homotrimer that has an asymmetric tripod-like structure when bound to phage L capsids. The N-termini of the trimer subunits consist of spatially separated globular OB-fold domains that interact with the virions of phage L or the related phage P22. The C-termini of the trimer form a spike structure that accounts for nearly all the interactions that stabilize the trimer. A Dec mutant with the spike residues 99-134 deleted (Dec<sub>1-98</sub>) was used to demonstrate that the globular OB-fold domain folds independently of the C-terminal residues. However, Dec<sub>1-98</sub> was unable to bind phage P22 virions, indicating the C-terminal spike is essential for stable capsid interaction. The full-length Dec trimer is disassembled into monomers by acidification to pH <2. These monomers retain the folded globular OB-fold domain structure, but the spike is unfolded. Increasing the pH of the Dec monomer solution to pH 6 allowed for slow trimer formation in vitro over the course of days. The infectious cycle of phage L is only around an hour, thereby implying Dec trimer assembly in vivo is templated by the phage capsid. The thermodynamic hypothesis holds that protein folding is determined by the amino acid sequence. Dec serves as an unusual example of an oligomeric folding step that is kinetically accelerated by a viral capsid template. The capsid templating mechanism could satisfy the flexibility needed for Dec to adapt to the unusual quasi-symmetric binding site on the mature phage L capsid.</p>","PeriodicalId":20761,"journal":{"name":"Protein Science","volume":"34 4","pages":"e70089"},"PeriodicalIF":4.5000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11917118/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pro.70089","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The 134-residue phage L decoration protein (Dec) forms a capsid-stabilizing homotrimer that has an asymmetric tripod-like structure when bound to phage L capsids. The N-termini of the trimer subunits consist of spatially separated globular OB-fold domains that interact with the virions of phage L or the related phage P22. The C-termini of the trimer form a spike structure that accounts for nearly all the interactions that stabilize the trimer. A Dec mutant with the spike residues 99-134 deleted (Dec1-98) was used to demonstrate that the globular OB-fold domain folds independently of the C-terminal residues. However, Dec1-98 was unable to bind phage P22 virions, indicating the C-terminal spike is essential for stable capsid interaction. The full-length Dec trimer is disassembled into monomers by acidification to pH <2. These monomers retain the folded globular OB-fold domain structure, but the spike is unfolded. Increasing the pH of the Dec monomer solution to pH 6 allowed for slow trimer formation in vitro over the course of days. The infectious cycle of phage L is only around an hour, thereby implying Dec trimer assembly in vivo is templated by the phage capsid. The thermodynamic hypothesis holds that protein folding is determined by the amino acid sequence. Dec serves as an unusual example of an oligomeric folding step that is kinetically accelerated by a viral capsid template. The capsid templating mechanism could satisfy the flexibility needed for Dec to adapt to the unusual quasi-symmetric binding site on the mature phage L capsid.
期刊介绍:
Protein Science, the flagship journal of The Protein Society, is a publication that focuses on advancing fundamental knowledge in the field of protein molecules. The journal welcomes original reports and review articles that contribute to our understanding of protein function, structure, folding, design, and evolution.
Additionally, Protein Science encourages papers that explore the applications of protein science in various areas such as therapeutics, protein-based biomaterials, bionanotechnology, synthetic biology, and bioelectronics.
The journal accepts manuscript submissions in any suitable format for review, with the requirement of converting the manuscript to journal-style format only upon acceptance for publication.
Protein Science is indexed and abstracted in numerous databases, including the Agricultural & Environmental Science Database (ProQuest), Biological Science Database (ProQuest), CAS: Chemical Abstracts Service (ACS), Embase (Elsevier), Health & Medical Collection (ProQuest), Health Research Premium Collection (ProQuest), Materials Science & Engineering Database (ProQuest), MEDLINE/PubMed (NLM), Natural Science Collection (ProQuest), and SciTech Premium Collection (ProQuest).