Structural insights into the fusion of annexin A5 and fluorescent proteins generating hundredfold differentiated binding affinities to phosphatidylserine.
{"title":"Structural insights into the fusion of annexin A5 and fluorescent proteins generating hundredfold differentiated binding affinities to phosphatidylserine.","authors":"Mengyue Gao, Wei Tang, Shihui Wang, Yunke Wang, Minjin Hu, Zichun Hua","doi":"10.1002/pro.70086","DOIUrl":null,"url":null,"abstract":"<p><p>Fluorescent proteins (FPs) are an indispensable part of modern biology. Numerous studies utilize FPs for protein labeling and cell tracking purposes. They are commonly fused with proteins to aid in their visualization. It is generally assumed that these FP tags have minimal impact on the properties of the fusion proteins. Do the FP types affect the function and characteristics of target proteins on earth? So far, there is no definite answer. Fluorescent annexin A5 (AnxA5) has been extensively employed as apoptosis probes. However, except for chemically labeled AnxA5, there are few developed FP-based AnxA5 probes. Therefore, it is essential to screen out suitable FPs for developing high-affinity AnxA5 probes. Here, various fusion proteins (AnxA5-FPs) were developed. The fusion of AnxA5 did not change the chromophore environments of FPs, while the fusion of FPs led to over a 100-fold difference in AnxA5's affinity for phosphatidylserine (PS). We found that polymeric AnxA5-FPs had higher PS-affinity. Remarkably, although the structures of FPs were similar, they fused with AnxA5 in different modes, generating fusion proteins with different spatial conformations. The difference in conformation resulted in variations in the PS-binding pattern of AnxA5, leading to differing levels of PS-affinity. More importantly, we found five high-affinity (Kd > 10<sup>-7</sup> M) FP-based AnxA5 probes with different excitation wavelengths. Together, these observations suggested that differences in the fusion modes of AnxA5 and FPs provided a robust mechanism for modulating PS-affinity of AnxA5. We anticipate that our findings can provide a guideline to develop highly sensitive AnxA5 probes.</p>","PeriodicalId":20761,"journal":{"name":"Protein Science","volume":"34 4","pages":"e70086"},"PeriodicalIF":4.5000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11917116/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pro.70086","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Fluorescent proteins (FPs) are an indispensable part of modern biology. Numerous studies utilize FPs for protein labeling and cell tracking purposes. They are commonly fused with proteins to aid in their visualization. It is generally assumed that these FP tags have minimal impact on the properties of the fusion proteins. Do the FP types affect the function and characteristics of target proteins on earth? So far, there is no definite answer. Fluorescent annexin A5 (AnxA5) has been extensively employed as apoptosis probes. However, except for chemically labeled AnxA5, there are few developed FP-based AnxA5 probes. Therefore, it is essential to screen out suitable FPs for developing high-affinity AnxA5 probes. Here, various fusion proteins (AnxA5-FPs) were developed. The fusion of AnxA5 did not change the chromophore environments of FPs, while the fusion of FPs led to over a 100-fold difference in AnxA5's affinity for phosphatidylserine (PS). We found that polymeric AnxA5-FPs had higher PS-affinity. Remarkably, although the structures of FPs were similar, they fused with AnxA5 in different modes, generating fusion proteins with different spatial conformations. The difference in conformation resulted in variations in the PS-binding pattern of AnxA5, leading to differing levels of PS-affinity. More importantly, we found five high-affinity (Kd > 10-7 M) FP-based AnxA5 probes with different excitation wavelengths. Together, these observations suggested that differences in the fusion modes of AnxA5 and FPs provided a robust mechanism for modulating PS-affinity of AnxA5. We anticipate that our findings can provide a guideline to develop highly sensitive AnxA5 probes.
期刊介绍:
Protein Science, the flagship journal of The Protein Society, is a publication that focuses on advancing fundamental knowledge in the field of protein molecules. The journal welcomes original reports and review articles that contribute to our understanding of protein function, structure, folding, design, and evolution.
Additionally, Protein Science encourages papers that explore the applications of protein science in various areas such as therapeutics, protein-based biomaterials, bionanotechnology, synthetic biology, and bioelectronics.
The journal accepts manuscript submissions in any suitable format for review, with the requirement of converting the manuscript to journal-style format only upon acceptance for publication.
Protein Science is indexed and abstracted in numerous databases, including the Agricultural & Environmental Science Database (ProQuest), Biological Science Database (ProQuest), CAS: Chemical Abstracts Service (ACS), Embase (Elsevier), Health & Medical Collection (ProQuest), Health Research Premium Collection (ProQuest), Materials Science & Engineering Database (ProQuest), MEDLINE/PubMed (NLM), Natural Science Collection (ProQuest), and SciTech Premium Collection (ProQuest).