Solution structure of the Z0 domain from transcription repressor BCL11A sheds light on the sequence properties of protein-binding zinc fingers.

IF 4.5 3区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Protein Science Pub Date : 2025-04-01 DOI:10.1002/pro.70097
Rilee E Harris, Richard D Whitehead, Andrei T Alexandrescu
{"title":"Solution structure of the Z0 domain from transcription repressor BCL11A sheds light on the sequence properties of protein-binding zinc fingers.","authors":"Rilee E Harris, Richard D Whitehead, Andrei T Alexandrescu","doi":"10.1002/pro.70097","DOIUrl":null,"url":null,"abstract":"<p><p>The transcription repressor BCL11A governs the switch from fetal to adult hemoglobin during development. By targeting BCL11A, fetal hemoglobin expression can be de-repressed to substitute for defective adult hemoglobin in inherited diseases including beta-thalassemia and sickle-cell anemia. BCL11A has six CCHH-type zinc fingers, of which domains 4-6 are necessary and sufficient for dsDNA binding. Here, we focus on a putative ZNF at the N-terminus of BCL11A (residues 46-72), Z0, thought to modulate oligomerization of the transcription repressor. Using NMR and CD spectroscopy at low concentrations that favor the monomer, Z0 is shown to be a thermostable CCHC zinc finger with a pM dissociation constant for zinc. The NMR structure of Z0 has a prototypical beta-beta-alpha fold, with a hydrophobic knob comprising about half the structure. The unusual proportion of hydrophobic residues in Z0 led us to investigate if this is a more general feature of zinc fingers that do not bind dsDNA. We used the ZF and WebLogo servers to examine sequences of zinc fingers with demonstrated DNA-binding function, non-DNA-binders, and the CCHC-type family of protein-binders. DNA-binders are distinguished by contiguous stretches of high-scoring zinc fingers. Non-DNA-binders show a depletion of polar residues at the positions expected to contact nucleotides and increased sequence divergence, making these domains more likely to be annotated as atypical, degenerate, or to be missed as zinc fingers. We anticipate these sequence patterns will help distinguish DNA-binders from non-binders, an open problem in the functional understanding of zinc-finger motifs.</p>","PeriodicalId":20761,"journal":{"name":"Protein Science","volume":"34 4","pages":"e70097"},"PeriodicalIF":4.5000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11915622/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pro.70097","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The transcription repressor BCL11A governs the switch from fetal to adult hemoglobin during development. By targeting BCL11A, fetal hemoglobin expression can be de-repressed to substitute for defective adult hemoglobin in inherited diseases including beta-thalassemia and sickle-cell anemia. BCL11A has six CCHH-type zinc fingers, of which domains 4-6 are necessary and sufficient for dsDNA binding. Here, we focus on a putative ZNF at the N-terminus of BCL11A (residues 46-72), Z0, thought to modulate oligomerization of the transcription repressor. Using NMR and CD spectroscopy at low concentrations that favor the monomer, Z0 is shown to be a thermostable CCHC zinc finger with a pM dissociation constant for zinc. The NMR structure of Z0 has a prototypical beta-beta-alpha fold, with a hydrophobic knob comprising about half the structure. The unusual proportion of hydrophobic residues in Z0 led us to investigate if this is a more general feature of zinc fingers that do not bind dsDNA. We used the ZF and WebLogo servers to examine sequences of zinc fingers with demonstrated DNA-binding function, non-DNA-binders, and the CCHC-type family of protein-binders. DNA-binders are distinguished by contiguous stretches of high-scoring zinc fingers. Non-DNA-binders show a depletion of polar residues at the positions expected to contact nucleotides and increased sequence divergence, making these domains more likely to be annotated as atypical, degenerate, or to be missed as zinc fingers. We anticipate these sequence patterns will help distinguish DNA-binders from non-binders, an open problem in the functional understanding of zinc-finger motifs.

转录抑制因子BCL11A的Z0结构域的溶液结构揭示了蛋白结合锌指的序列特性。
在发育过程中,转录抑制因子BCL11A控制着从胎儿到成人血红蛋白的转换。通过靶向BCL11A,胎儿血红蛋白表达可以被去抑制,以替代遗传性疾病(包括-地中海贫血和镰状细胞性贫血)中有缺陷的成人血红蛋白。BCL11A有6个cchh型锌指,其中4-6个结构域是dsDNA结合所必需和充分的。在这里,我们将重点放在BCL11A n端(46-72残基)Z0的一个假定的ZNF上,该ZNF被认为可以调节转录抑制因子的寡聚化。在有利于单体的低浓度条件下,通过核磁共振和CD谱分析,Z0被证明是一种耐热的CCHC锌指,具有pM对锌的解离常数。Z0的核磁共振结构具有典型的β - β - α折叠,疏水旋钮约占结构的一半。Z0中疏水残基的不寻常比例使我们研究这是否是不结合dsDNA的锌指的更普遍特征。我们使用ZF和WebLogo服务器检测具有dna结合功能、非dna结合物和cchc型蛋白结合物家族的锌指序列。dna结合物的特征是连续的高分数锌指。非dna结合物在预期与核苷酸接触的位置显示极性残基的耗尽和序列分化的增加,使得这些结构域更有可能被注释为非典型、简并或被遗漏为锌指。我们预计这些序列模式将有助于区分dna结合物与非结合物,这是锌指基序功能理解中的一个开放问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Protein Science
Protein Science 生物-生化与分子生物学
CiteScore
12.40
自引率
1.20%
发文量
246
审稿时长
1 months
期刊介绍: Protein Science, the flagship journal of The Protein Society, is a publication that focuses on advancing fundamental knowledge in the field of protein molecules. The journal welcomes original reports and review articles that contribute to our understanding of protein function, structure, folding, design, and evolution. Additionally, Protein Science encourages papers that explore the applications of protein science in various areas such as therapeutics, protein-based biomaterials, bionanotechnology, synthetic biology, and bioelectronics. The journal accepts manuscript submissions in any suitable format for review, with the requirement of converting the manuscript to journal-style format only upon acceptance for publication. Protein Science is indexed and abstracted in numerous databases, including the Agricultural & Environmental Science Database (ProQuest), Biological Science Database (ProQuest), CAS: Chemical Abstracts Service (ACS), Embase (Elsevier), Health & Medical Collection (ProQuest), Health Research Premium Collection (ProQuest), Materials Science & Engineering Database (ProQuest), MEDLINE/PubMed (NLM), Natural Science Collection (ProQuest), and SciTech Premium Collection (ProQuest).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信