Mukhtiar Khan, Nadeem Khan, Ibad Ullah, Kamal Shah, Thabet Abdeljawad, Bahaaeldin Abdalla
{"title":"A novel fractal fractional mathematical model for HIV/AIDS transmission stability and sensitivity with numerical analysis.","authors":"Mukhtiar Khan, Nadeem Khan, Ibad Ullah, Kamal Shah, Thabet Abdeljawad, Bahaaeldin Abdalla","doi":"10.1038/s41598-025-93436-0","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding the complex dynamics of HIV/AIDS transmission requires models that capture real-world progression and intervention impacts. This study introduces an innovative mathematical framework using fractal-fractional calculus to analyze HIV/AIDS dynamics, emphasizing memory effects and nonlocal interactions critical to disease spread. By dividing populations into four distinct compartments-susceptible individuals, infected individuals, those undergoing treatment, and individuals in advanced AIDS stages-the model reflects key phases of infection and therapeutic interventions. Unlike conventional approaches, the proposed nonlinear transmission function, [Formula: see text], accounts for varying infectivity levels across stages (where [Formula: see text] is the total population and ∇ denotes the effective contact rate), offering a nuanced view of how treatment efficacy ([Formula: see text]) and progression to AIDS ([Formula: see text]) shape transmission. The analytical framework combines rigorous mathematical exploration with practical insights. We derive the basic reproduction number [Formula: see text] to assess outbreak potential and employ Lyapunov theory to establish global stability conditions. Using the Schauder fixed-point theorem, we prove the existence and uniqueness of solutions, while bifurcation analysis via center manifold theory reveals critical thresholds for disease persistence or elimination. We use a computational scheme that combines the Adams-Bashforth method with an interpolation-based correction technique to ensure numerical precision and confirm theoretical results. Sensitivity analysis highlights medication accessibility and delaying the spread of AIDS as a vital control strategy by identifying ([Formula: see text]) and ([Formula: see text]) as critical parameters. The numerical simulations illustrate the predictive ability of the model, which shows how fractal-fractional order affects outbreak trajectories and long-term disease burden. The framework outperforms conventional integer order models and produces more accurate epidemiological predictions by integrating memory-dependent transmission with fractional order flexibility. These findings demonstrate the model's value in developing targeted public health initiatives, particularly in environments with limited resources where disease monitoring and balancing treatment allocation is essential. In the end, our work provides a tool to better predict and manage the evolving challenges of HIV/AIDS by bridging the gap between theoretical mathematics and actual disease control.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"9291"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11920445/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-93436-0","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding the complex dynamics of HIV/AIDS transmission requires models that capture real-world progression and intervention impacts. This study introduces an innovative mathematical framework using fractal-fractional calculus to analyze HIV/AIDS dynamics, emphasizing memory effects and nonlocal interactions critical to disease spread. By dividing populations into four distinct compartments-susceptible individuals, infected individuals, those undergoing treatment, and individuals in advanced AIDS stages-the model reflects key phases of infection and therapeutic interventions. Unlike conventional approaches, the proposed nonlinear transmission function, [Formula: see text], accounts for varying infectivity levels across stages (where [Formula: see text] is the total population and ∇ denotes the effective contact rate), offering a nuanced view of how treatment efficacy ([Formula: see text]) and progression to AIDS ([Formula: see text]) shape transmission. The analytical framework combines rigorous mathematical exploration with practical insights. We derive the basic reproduction number [Formula: see text] to assess outbreak potential and employ Lyapunov theory to establish global stability conditions. Using the Schauder fixed-point theorem, we prove the existence and uniqueness of solutions, while bifurcation analysis via center manifold theory reveals critical thresholds for disease persistence or elimination. We use a computational scheme that combines the Adams-Bashforth method with an interpolation-based correction technique to ensure numerical precision and confirm theoretical results. Sensitivity analysis highlights medication accessibility and delaying the spread of AIDS as a vital control strategy by identifying ([Formula: see text]) and ([Formula: see text]) as critical parameters. The numerical simulations illustrate the predictive ability of the model, which shows how fractal-fractional order affects outbreak trajectories and long-term disease burden. The framework outperforms conventional integer order models and produces more accurate epidemiological predictions by integrating memory-dependent transmission with fractional order flexibility. These findings demonstrate the model's value in developing targeted public health initiatives, particularly in environments with limited resources where disease monitoring and balancing treatment allocation is essential. In the end, our work provides a tool to better predict and manage the evolving challenges of HIV/AIDS by bridging the gap between theoretical mathematics and actual disease control.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.