Franco Miskevish, Anabella Lodeyro, María Agustina Ponso, Carlos Bouzo, Robert Meeley, Marja C Timmermans, Marcela Dotto
{"title":"Maize mutants in miR394-regulated genes show improved drought tolerance.","authors":"Franco Miskevish, Anabella Lodeyro, María Agustina Ponso, Carlos Bouzo, Robert Meeley, Marja C Timmermans, Marcela Dotto","doi":"10.1111/ppl.70155","DOIUrl":null,"url":null,"abstract":"<p><p>Water limitation represents one of the major threats to agricultural production, which often leads to drought stress and results in compromised growth, development and yield of crop species. Drought tolerance has been intensively studied in search of potential targets for molecular approaches to crop improvement. However, drought adaptive traits are complex, and our understanding of the physiological and genetic basis of drought tolerance is still incomplete. The miR394-LCR pathway is a conserved regulatory module shown to participate in several aspects of plant growth and development, including stress response. Here, we characterized the miR394 pathway in maize, which harbours two genetic loci producing an evolutionarily conserved mature zma-miR394 targeting two transcripts coding for F-Box proteins, named hereby ZmLCR1 and ZmLCR2. Arabidopsis plants overexpressing the zma-MIR394B gene showed high tolerance to drought conditions compared to control plants. Moreover, analysis of the growth and development of single and double maize mutant plants in ZmLCR genes indicate that these mutations do not affect plant fitness when they grow in normal watering conditions, but mutants showed better survival than wild-type plants under water deprivation conditions. This increased drought tolerance is based on more efficient intrinsic water use, changes in root architecture and increased epicuticular wax content under water-limiting conditions. Our results indicate that the miR394-regulated ZmLCR genes are involved in drought stress tolerance and are remarkable candidates for maize crop improvement.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 2","pages":"e70155"},"PeriodicalIF":5.4000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ppl.70155","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Water limitation represents one of the major threats to agricultural production, which often leads to drought stress and results in compromised growth, development and yield of crop species. Drought tolerance has been intensively studied in search of potential targets for molecular approaches to crop improvement. However, drought adaptive traits are complex, and our understanding of the physiological and genetic basis of drought tolerance is still incomplete. The miR394-LCR pathway is a conserved regulatory module shown to participate in several aspects of plant growth and development, including stress response. Here, we characterized the miR394 pathway in maize, which harbours two genetic loci producing an evolutionarily conserved mature zma-miR394 targeting two transcripts coding for F-Box proteins, named hereby ZmLCR1 and ZmLCR2. Arabidopsis plants overexpressing the zma-MIR394B gene showed high tolerance to drought conditions compared to control plants. Moreover, analysis of the growth and development of single and double maize mutant plants in ZmLCR genes indicate that these mutations do not affect plant fitness when they grow in normal watering conditions, but mutants showed better survival than wild-type plants under water deprivation conditions. This increased drought tolerance is based on more efficient intrinsic water use, changes in root architecture and increased epicuticular wax content under water-limiting conditions. Our results indicate that the miR394-regulated ZmLCR genes are involved in drought stress tolerance and are remarkable candidates for maize crop improvement.
期刊介绍:
Physiologia Plantarum is an international journal committed to publishing the best full-length original research papers that advance our understanding of primary mechanisms of plant development, growth and productivity as well as plant interactions with the biotic and abiotic environment. All organisational levels of experimental plant biology – from molecular and cell biology, biochemistry and biophysics to ecophysiology and global change biology – fall within the scope of the journal. The content is distributed between 5 main subject areas supervised by Subject Editors specialised in the respective domain: (1) biochemistry and metabolism, (2) ecophysiology, stress and adaptation, (3) uptake, transport and assimilation, (4) development, growth and differentiation, (5) photobiology and photosynthesis.