{"title":"ABCB transporters: functionality extends to more than auxin transportation.","authors":"Ritu Devi, Palak Arora, Bhawna Verma, Shahnawaz Hussain, Fariha Chowdhary, Rubeena Tabssum, Suphla Gupta","doi":"10.1007/s00425-025-04662-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Main conclusion: </strong>ABCs transport diverse compounds; with plant's most abundant ABCG and ABCB subfamilies. ABCBs are multi-functional transporter proteins having role in plant adaptation. ATP-binding cassette (ABC) proteins have been known for the transportation of various structurally diverse compounds in all kingdoms of life. Plants possess a particularly high number of ABC transporters compared to other eukaryotes: the most abundant being ABCG followed by the ABCB subfamilies. While members of the ABCB subfamily are primarily known for auxin transportation, however, studies have shown their involvement in variety of other functions viz. growth and development, biotic and abiotic stresses, metal toxicity and homeostasis, cellular redox state stability, stomatal regulation, cell shape maintenance, and transport of secondary metabolites and phytohormones. These proteins are able to perform various biological processes due to their widespread localization in the plasma membrane, mitochondrial membrane, chloroplast, and tonoplast facilitating membrane transport influenced by various environmental and biological cues. The current review compiles published insights into the role of ABCB transporters, and also provides brief insights into the role of ABCB transporters in a medicinal plant, where the synthesis of its bioactive secondary metabolite is linked to the primary function of ABCBs, i.e., auxin transport. The review discusses ABCB subfamily members as multi-functional protein and comprehensively examines their role in various biological processes that help plants to survive under unfavorable environmental conditions.</p>","PeriodicalId":20177,"journal":{"name":"Planta","volume":"261 4","pages":"93"},"PeriodicalIF":3.6000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Planta","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00425-025-04662-9","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Main conclusion: ABCs transport diverse compounds; with plant's most abundant ABCG and ABCB subfamilies. ABCBs are multi-functional transporter proteins having role in plant adaptation. ATP-binding cassette (ABC) proteins have been known for the transportation of various structurally diverse compounds in all kingdoms of life. Plants possess a particularly high number of ABC transporters compared to other eukaryotes: the most abundant being ABCG followed by the ABCB subfamilies. While members of the ABCB subfamily are primarily known for auxin transportation, however, studies have shown their involvement in variety of other functions viz. growth and development, biotic and abiotic stresses, metal toxicity and homeostasis, cellular redox state stability, stomatal regulation, cell shape maintenance, and transport of secondary metabolites and phytohormones. These proteins are able to perform various biological processes due to their widespread localization in the plasma membrane, mitochondrial membrane, chloroplast, and tonoplast facilitating membrane transport influenced by various environmental and biological cues. The current review compiles published insights into the role of ABCB transporters, and also provides brief insights into the role of ABCB transporters in a medicinal plant, where the synthesis of its bioactive secondary metabolite is linked to the primary function of ABCBs, i.e., auxin transport. The review discusses ABCB subfamily members as multi-functional protein and comprehensively examines their role in various biological processes that help plants to survive under unfavorable environmental conditions.
期刊介绍:
Planta publishes timely and substantial articles on all aspects of plant biology.
We welcome original research papers on any plant species. Areas of interest include biochemistry, bioenergy, biotechnology, cell biology, development, ecological and environmental physiology, growth, metabolism, morphogenesis, molecular biology, new methods, physiology, plant-microbe interactions, structural biology, and systems biology.