Graph Neural Networks and Multimodal DTI Features for Schizophrenia Classification: Insights from Brain Network Analysis and Gene Expression.

IF 5.9 2区 医学 Q1 NEUROSCIENCES
Neuroscience bulletin Pub Date : 2025-06-01 Epub Date: 2025-03-18 DOI:10.1007/s12264-025-01385-5
Jingjing Gao, Heping Tang, Zhengning Wang, Yanling Li, Na Luo, Ming Song, Sangma Xie, Weiyang Shi, Hao Yan, Lin Lu, Jun Yan, Peng Li, Yuqing Song, Jun Chen, Yunchun Chen, Huaning Wang, Wenming Liu, Zhigang Li, Hua Guo, Ping Wan, Luxian Lv, Yongfeng Yang, Huiling Wang, Hongxing Zhang, Huawang Wu, Yuping Ning, Dai Zhang, Tianzi Jiang
{"title":"Graph Neural Networks and Multimodal DTI Features for Schizophrenia Classification: Insights from Brain Network Analysis and Gene Expression.","authors":"Jingjing Gao, Heping Tang, Zhengning Wang, Yanling Li, Na Luo, Ming Song, Sangma Xie, Weiyang Shi, Hao Yan, Lin Lu, Jun Yan, Peng Li, Yuqing Song, Jun Chen, Yunchun Chen, Huaning Wang, Wenming Liu, Zhigang Li, Hua Guo, Ping Wan, Luxian Lv, Yongfeng Yang, Huiling Wang, Hongxing Zhang, Huawang Wu, Yuping Ning, Dai Zhang, Tianzi Jiang","doi":"10.1007/s12264-025-01385-5","DOIUrl":null,"url":null,"abstract":"<p><p>Schizophrenia (SZ) stands as a severe psychiatric disorder. This study applied diffusion tensor imaging (DTI) data in conjunction with graph neural networks to distinguish SZ patients from normal controls (NCs) and showcases the superior performance of a graph neural network integrating combined fractional anisotropy and fiber number brain network features, achieving an accuracy of 73.79% in distinguishing SZ patients from NCs. Beyond mere discrimination, our study delved deeper into the advantages of utilizing white matter brain network features for identifying SZ patients through interpretable model analysis and gene expression analysis. These analyses uncovered intricate interrelationships between brain imaging markers and genetic biomarkers, providing novel insights into the neuropathological basis of SZ. In summary, our findings underscore the potential of graph neural networks applied to multimodal DTI data for enhancing SZ detection through an integrated analysis of neuroimaging and genetic features.</p>","PeriodicalId":19314,"journal":{"name":"Neuroscience bulletin","volume":" ","pages":"933-950"},"PeriodicalIF":5.9000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience bulletin","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12264-025-01385-5","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Schizophrenia (SZ) stands as a severe psychiatric disorder. This study applied diffusion tensor imaging (DTI) data in conjunction with graph neural networks to distinguish SZ patients from normal controls (NCs) and showcases the superior performance of a graph neural network integrating combined fractional anisotropy and fiber number brain network features, achieving an accuracy of 73.79% in distinguishing SZ patients from NCs. Beyond mere discrimination, our study delved deeper into the advantages of utilizing white matter brain network features for identifying SZ patients through interpretable model analysis and gene expression analysis. These analyses uncovered intricate interrelationships between brain imaging markers and genetic biomarkers, providing novel insights into the neuropathological basis of SZ. In summary, our findings underscore the potential of graph neural networks applied to multimodal DTI data for enhancing SZ detection through an integrated analysis of neuroimaging and genetic features.

用于精神分裂症分类的图神经网络和多模态 DTI 特征:脑网络分析和基因表达的启示。
精神分裂症(SZ)是一种严重的精神疾病。本研究将弥散张量成像(diffusion tensor imaging, DTI)数据与图神经网络相结合,用于区分SZ患者与正常对照(normal control, nc),并展示了结合分数各向异性和纤维数脑网络特征的图神经网络的优越性能,区分SZ患者与nc的准确率达到73.79%。除了单纯的区分,我们的研究还通过可解释模型分析和基因表达分析,深入探讨了利用脑白质网络特征识别SZ患者的优势。这些分析揭示了脑成像标记物和遗传生物标记物之间复杂的相互关系,为SZ的神经病理学基础提供了新的见解。总之,我们的研究结果强调了图神经网络应用于多模态DTI数据的潜力,通过对神经成像和遗传特征的综合分析来增强SZ检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neuroscience bulletin
Neuroscience bulletin NEUROSCIENCES-
CiteScore
7.20
自引率
16.10%
发文量
163
审稿时长
6-12 weeks
期刊介绍: Neuroscience Bulletin (NB), the official journal of the Chinese Neuroscience Society, is published monthly by Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) and Springer. NB aims to publish research advances in the field of neuroscience and promote exchange of scientific ideas within the community. The journal publishes original papers on various topics in neuroscience and focuses on potential disease implications on the nervous system. NB welcomes research contributions on molecular, cellular, or developmental neuroscience using multidisciplinary approaches and functional strategies. We feature full-length original articles, reviews, methods, letters to the editor, insights, and research highlights. As the official journal of the Chinese Neuroscience Society, which currently has more than 12,000 members in China, NB is devoted to facilitating communications between Chinese neuroscientists and their international colleagues. The journal is recognized as the most influential publication in neuroscience research in China.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信