Quantitative detection of amyloid fibrils using fluorescence resonance energy transfer between engineered yellow and cyan proteins.

IF 4.5 3区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Protein Science Pub Date : 2025-04-01 DOI:10.1002/pro.70094
Caitlyn Moustouka, George I Makhatadze
{"title":"Quantitative detection of amyloid fibrils using fluorescence resonance energy transfer between engineered yellow and cyan proteins.","authors":"Caitlyn Moustouka, George I Makhatadze","doi":"10.1002/pro.70094","DOIUrl":null,"url":null,"abstract":"<p><p>Over 20 human diseases are caused by or associated with amyloid formation. Developing diagnostic tools to understand the process of amyloid fibril formation is essential for creating therapeutic agents to combat these widespread and growing health problems. Here, we capitalize on our recent striking discovery that green fluorescent protein (GFP), one of the most-used proteins in molecular and cell biology, has a high intrinsic binding affinity to various structural intermediates along the fibrillation pathway, independent of amyloid sequence. Using engineered GFP with the fluorescence properties of Aquamarine and mCitrine, we developed a fluorescence resonance energy transfer (FRET)-based sensor to quantitatively monitor amyloid fibrils. The proof-of-principle characterization was performed on a test system consisting of PAPf39 fibrils.</p>","PeriodicalId":20761,"journal":{"name":"Protein Science","volume":"34 4","pages":"e70094"},"PeriodicalIF":4.5000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11915345/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pro.70094","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Over 20 human diseases are caused by or associated with amyloid formation. Developing diagnostic tools to understand the process of amyloid fibril formation is essential for creating therapeutic agents to combat these widespread and growing health problems. Here, we capitalize on our recent striking discovery that green fluorescent protein (GFP), one of the most-used proteins in molecular and cell biology, has a high intrinsic binding affinity to various structural intermediates along the fibrillation pathway, independent of amyloid sequence. Using engineered GFP with the fluorescence properties of Aquamarine and mCitrine, we developed a fluorescence resonance energy transfer (FRET)-based sensor to quantitatively monitor amyloid fibrils. The proof-of-principle characterization was performed on a test system consisting of PAPf39 fibrils.

利用荧光共振能量转移在工程黄色和青色蛋白之间定量检测淀粉样蛋白原纤维。
超过20种人类疾病是由淀粉样蛋白形成引起或与之相关的。开发诊断工具来了解淀粉样蛋白纤维形成的过程对于创造治疗药物来对抗这些广泛和日益严重的健康问题至关重要。在这里,我们利用我们最近的惊人发现,绿色荧光蛋白(GFP),在分子和细胞生物学中最常用的蛋白质之一,具有高的内在结合亲和力的各种结构中间体沿纤颤途径,独立于淀粉样蛋白序列。利用具有海蓝宝石和mCitrine荧光特性的工程GFP,我们开发了一种基于荧光共振能量转移(FRET)的传感器,用于定量监测淀粉样蛋白原纤维。在由PAPf39原纤维组成的测试系统上进行了原理验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Protein Science
Protein Science 生物-生化与分子生物学
CiteScore
12.40
自引率
1.20%
发文量
246
审稿时长
1 months
期刊介绍: Protein Science, the flagship journal of The Protein Society, is a publication that focuses on advancing fundamental knowledge in the field of protein molecules. The journal welcomes original reports and review articles that contribute to our understanding of protein function, structure, folding, design, and evolution. Additionally, Protein Science encourages papers that explore the applications of protein science in various areas such as therapeutics, protein-based biomaterials, bionanotechnology, synthetic biology, and bioelectronics. The journal accepts manuscript submissions in any suitable format for review, with the requirement of converting the manuscript to journal-style format only upon acceptance for publication. Protein Science is indexed and abstracted in numerous databases, including the Agricultural & Environmental Science Database (ProQuest), Biological Science Database (ProQuest), CAS: Chemical Abstracts Service (ACS), Embase (Elsevier), Health & Medical Collection (ProQuest), Health Research Premium Collection (ProQuest), Materials Science & Engineering Database (ProQuest), MEDLINE/PubMed (NLM), Natural Science Collection (ProQuest), and SciTech Premium Collection (ProQuest).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信