Warren G Hill, Bryce MacIver, Gary A Churchill, Mariana G DeOliveira, Mark L Zeidel, Marcelo Cicconet
{"title":"ML-UrineQuant: A machine learning program for identifying and quantifying mouse urine on absorbent paper.","authors":"Warren G Hill, Bryce MacIver, Gary A Churchill, Mariana G DeOliveira, Mark L Zeidel, Marcelo Cicconet","doi":"10.14814/phy2.70243","DOIUrl":null,"url":null,"abstract":"<p><p>The void spot assay has gained popularity as a way of assessing functional bladder voiding parameters in mice, but analyzing the size and distribution of urine spot patterns on filter paper with software remains problematic due to inter-laboratory differences in image contrast and resolution quality and non-void artifacts. We have developed a machine learning algorithm based on Region-based Convolutional Neural Networks (Mask-RCNN) that was trained in object recognition to detect and quantitate urine spots across a broad range of sizes-ML-UrineQuant. The model proved extremely accurate at identifying urine spots in a wide variety of illumination and contrast settings. The overwhelming advantage it offers over current algorithms will be to allow individual labs to fine-tune the model on their specific images regardless of the image characteristics. This should be a valuable tool for anyone performing lower urinary tract research using mouse models.</p>","PeriodicalId":20083,"journal":{"name":"Physiological Reports","volume":"13 6","pages":"e70243"},"PeriodicalIF":2.2000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11919631/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14814/phy2.70243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The void spot assay has gained popularity as a way of assessing functional bladder voiding parameters in mice, but analyzing the size and distribution of urine spot patterns on filter paper with software remains problematic due to inter-laboratory differences in image contrast and resolution quality and non-void artifacts. We have developed a machine learning algorithm based on Region-based Convolutional Neural Networks (Mask-RCNN) that was trained in object recognition to detect and quantitate urine spots across a broad range of sizes-ML-UrineQuant. The model proved extremely accurate at identifying urine spots in a wide variety of illumination and contrast settings. The overwhelming advantage it offers over current algorithms will be to allow individual labs to fine-tune the model on their specific images regardless of the image characteristics. This should be a valuable tool for anyone performing lower urinary tract research using mouse models.
期刊介绍:
Physiological Reports is an online only, open access journal that will publish peer reviewed research across all areas of basic, translational, and clinical physiology and allied disciplines. Physiological Reports is a collaboration between The Physiological Society and the American Physiological Society, and is therefore in a unique position to serve the international physiology community through quick time to publication while upholding a quality standard of sound research that constitutes a useful contribution to the field.