{"title":"The psychedelic psilocybin and light exposure have similar and synergistic effects on gene expression patterns in the visual cortex.","authors":"Ram Harari, Dmitriy Getselter, Evan Elliott","doi":"10.1186/s13041-025-01191-0","DOIUrl":null,"url":null,"abstract":"<p><p>Psilocybin, a psychedelic compound found in specific hallucinogenic mushrooms, is known to induce changes in visual perception and experience in humans. However, there is little knowledge of the molecular mechanisms through which psilocybin affects vision-associated regions in the brain, such as the visual cortex. The current study determined both psilocybin-induced and experience-dependent changes (exposure to light) in visual cortex gene expression in mice. Of great interest, psilocybin induced robust gene expression changes in the visual cortex that closely mirror light-induced gene expression changes, even when the mice are kept in the dark. These gene expression changes correspond to specific molecular pathways, including synaptic functioning, and represent genes expressed in specific subtypes of neurons. In addition, exposure to both psilocybin and light induced synergetic changes in genes involved in epigenetic programming. Overall, the study determined that psilocybin induces robust changes in gene expression in the visual cortex that may have functional consequences in visual perception both in the absence and in synergy with visual experience.</p>","PeriodicalId":18851,"journal":{"name":"Molecular Brain","volume":"18 1","pages":"23"},"PeriodicalIF":3.3000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11921621/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Brain","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13041-025-01191-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Psilocybin, a psychedelic compound found in specific hallucinogenic mushrooms, is known to induce changes in visual perception and experience in humans. However, there is little knowledge of the molecular mechanisms through which psilocybin affects vision-associated regions in the brain, such as the visual cortex. The current study determined both psilocybin-induced and experience-dependent changes (exposure to light) in visual cortex gene expression in mice. Of great interest, psilocybin induced robust gene expression changes in the visual cortex that closely mirror light-induced gene expression changes, even when the mice are kept in the dark. These gene expression changes correspond to specific molecular pathways, including synaptic functioning, and represent genes expressed in specific subtypes of neurons. In addition, exposure to both psilocybin and light induced synergetic changes in genes involved in epigenetic programming. Overall, the study determined that psilocybin induces robust changes in gene expression in the visual cortex that may have functional consequences in visual perception both in the absence and in synergy with visual experience.
期刊介绍:
Molecular Brain is an open access, peer-reviewed journal that considers manuscripts on all aspects of studies on the nervous system at the molecular, cellular, and systems level providing a forum for scientists to communicate their findings.
Molecular brain research is a rapidly expanding research field in which integrative approaches at the genetic, molecular, cellular and synaptic levels yield key information about the physiological and pathological brain. These studies involve the use of a wide range of modern techniques in molecular biology, genomics, proteomics, imaging and electrophysiology.