Targeting the histone reader ZMYND8 inhibits antiandrogen-induced neuroendocrine tumor transdifferentiation of prostate cancer.

IF 23.5 1区 医学 Q1 ONCOLOGY
Hanling Wang, Sulin Zhang, Qiang Pan, Jiacheng Guo, Ni Li, Lifan Chen, Junyu Xu, Jingyi Zhou, Yongqiang Gu, Xuege Wang, Guoying Zhang, Yannan Lian, Wei Zhang, Naiheng Lin, Zige Jin, Yi Zang, Weihua Lan, Xiaoyan Cheng, Minjia Tan, Fei Xavier Chen, Jun Jiang, Qiuli Liu, Mingyue Zheng, Jun Qin
{"title":"Targeting the histone reader ZMYND8 inhibits antiandrogen-induced neuroendocrine tumor transdifferentiation of prostate cancer.","authors":"Hanling Wang, Sulin Zhang, Qiang Pan, Jiacheng Guo, Ni Li, Lifan Chen, Junyu Xu, Jingyi Zhou, Yongqiang Gu, Xuege Wang, Guoying Zhang, Yannan Lian, Wei Zhang, Naiheng Lin, Zige Jin, Yi Zang, Weihua Lan, Xiaoyan Cheng, Minjia Tan, Fei Xavier Chen, Jun Jiang, Qiuli Liu, Mingyue Zheng, Jun Qin","doi":"10.1038/s43018-025-00928-z","DOIUrl":null,"url":null,"abstract":"<p><p>The transdifferentiation from adenocarcinoma to neuroendocrine prostate cancer (NEPC) in men confers antiandrogen therapy resistance. Here our analysis combining CRISPR‒Cas9 screening with single-cell RNA sequencing tracking of tumor transition demonstrated that antiandrogen-induced zinc finger MYND-type containing 8 (ZMYND8)-dependent epigenetic programming orchestrates NEPC transdifferentiation. Ablation of Zmynd8 prevents NEPC development, while ZMYND8 upregulation mediated by achaete-scute homolog 1 promotes NEPC differentiation. We show that forkhead box protein M1 (FOXM1) stabilizes ZMYND8 binding to chromatin regions characterized by H3K4me1-H3K14ac modification and FOXM1 targeting. Antiandrogen therapy releases the SWI/SNF chromatin remodeling complex from the androgen receptor, facilitating its interaction with ZMYND8-FOXM1 to upregulate critical neuroendocrine lineage regulators. We develop iZMYND8-34, a small molecule designed to inhibit ZMYND8's histone recognition, which effectively blocks NEPC development. These findings reveal the critical role of ZMYND8-dependent epigenetic programming induced by androgen deprivation therapy in orchestrating lineage fate. Targeting ZMYND8 emerges as a promising strategy for impeding NEPC development.</p>","PeriodicalId":18885,"journal":{"name":"Nature cancer","volume":" ","pages":""},"PeriodicalIF":23.5000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s43018-025-00928-z","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The transdifferentiation from adenocarcinoma to neuroendocrine prostate cancer (NEPC) in men confers antiandrogen therapy resistance. Here our analysis combining CRISPR‒Cas9 screening with single-cell RNA sequencing tracking of tumor transition demonstrated that antiandrogen-induced zinc finger MYND-type containing 8 (ZMYND8)-dependent epigenetic programming orchestrates NEPC transdifferentiation. Ablation of Zmynd8 prevents NEPC development, while ZMYND8 upregulation mediated by achaete-scute homolog 1 promotes NEPC differentiation. We show that forkhead box protein M1 (FOXM1) stabilizes ZMYND8 binding to chromatin regions characterized by H3K4me1-H3K14ac modification and FOXM1 targeting. Antiandrogen therapy releases the SWI/SNF chromatin remodeling complex from the androgen receptor, facilitating its interaction with ZMYND8-FOXM1 to upregulate critical neuroendocrine lineage regulators. We develop iZMYND8-34, a small molecule designed to inhibit ZMYND8's histone recognition, which effectively blocks NEPC development. These findings reveal the critical role of ZMYND8-dependent epigenetic programming induced by androgen deprivation therapy in orchestrating lineage fate. Targeting ZMYND8 emerges as a promising strategy for impeding NEPC development.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature cancer
Nature cancer Medicine-Oncology
CiteScore
31.10
自引率
1.80%
发文量
129
期刊介绍: Cancer is a devastating disease responsible for millions of deaths worldwide. However, many of these deaths could be prevented with improved prevention and treatment strategies. To achieve this, it is crucial to focus on accurate diagnosis, effective treatment methods, and understanding the socioeconomic factors that influence cancer rates. Nature Cancer aims to serve as a unique platform for sharing the latest advancements in cancer research across various scientific fields, encompassing life sciences, physical sciences, applied sciences, and social sciences. The journal is particularly interested in fundamental research that enhances our understanding of tumor development and progression, as well as research that translates this knowledge into clinical applications through innovative diagnostic and therapeutic approaches. Additionally, Nature Cancer welcomes clinical studies that inform cancer diagnosis, treatment, and prevention, along with contributions exploring the societal impact of cancer on a global scale. In addition to publishing original research, Nature Cancer will feature Comments, Reviews, News & Views, Features, and Correspondence that hold significant value for the diverse field of cancer research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信