Less is more: slow-codon windows enhance eGFP mRNA resilience against RNA interference.

IF 3.7 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Journal of The Royal Society Interface Pub Date : 2025-03-01 Epub Date: 2025-03-19 DOI:10.1098/rsif.2024.0582
Judith A Müller, Gerlinde Schwake, Anita Reiser, Daniel Woschée, Zahra Alirezaeizanjani, Joachim O Rädler, Sophia Rudorf
{"title":"Less is more: slow-codon windows enhance eGFP mRNA resilience against RNA interference.","authors":"Judith A Müller, Gerlinde Schwake, Anita Reiser, Daniel Woschée, Zahra Alirezaeizanjani, Joachim O Rädler, Sophia Rudorf","doi":"10.1098/rsif.2024.0582","DOIUrl":null,"url":null,"abstract":"<p><p>Extensive efforts have been devoted to enhancing the translation efficiency of mRNA delivered to mammalian cells via codon optimization. However, the impact of codon choice on mRNA stability remains underexplored. In this study, we investigated the influence of codon usage on mRNA degradation kinetics in cultured human cell lines using live-cell imaging on single-cell arrays. By measuring mRNA lifetimes at the single-cell level for synthetic mRNA constructs, we confirmed that mRNAs containing slowly translated codon windows have shorter lifetimes. Unexpectedly, these mRNAs did not exhibit decreased stability in the presence of small interfering RNA (siRNA) compared with the unmutated sequence, suggesting an interference of different concurrent degradation mechanisms. We employed stochastic simulations to predict ribosome density along the open reading frame, revealing that the ribosome densities correlated with mRNA stability in a cell-type- and codon-position-specific manner. In summary, our results suggest that the effect of codon choice and its influence on mRNA lifetime is context-dependent with respect to cell type, codon position and RNA interference.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"22 224","pages":"20240582"},"PeriodicalIF":3.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11919499/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Royal Society Interface","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsif.2024.0582","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Extensive efforts have been devoted to enhancing the translation efficiency of mRNA delivered to mammalian cells via codon optimization. However, the impact of codon choice on mRNA stability remains underexplored. In this study, we investigated the influence of codon usage on mRNA degradation kinetics in cultured human cell lines using live-cell imaging on single-cell arrays. By measuring mRNA lifetimes at the single-cell level for synthetic mRNA constructs, we confirmed that mRNAs containing slowly translated codon windows have shorter lifetimes. Unexpectedly, these mRNAs did not exhibit decreased stability in the presence of small interfering RNA (siRNA) compared with the unmutated sequence, suggesting an interference of different concurrent degradation mechanisms. We employed stochastic simulations to predict ribosome density along the open reading frame, revealing that the ribosome densities correlated with mRNA stability in a cell-type- and codon-position-specific manner. In summary, our results suggest that the effect of codon choice and its influence on mRNA lifetime is context-dependent with respect to cell type, codon position and RNA interference.

少即是多:慢密码子窗口增强eGFP mRNA抵抗RNA干扰的弹性。
通过密码子优化来提高传递到哺乳动物细胞的mRNA的翻译效率已经得到了广泛的研究。然而,密码子选择对mRNA稳定性的影响仍未得到充分研究。在这项研究中,我们利用单细胞阵列的活细胞成像技术研究了密码子使用对培养的人细胞系mRNA降解动力学的影响。通过测量单细胞水平合成mRNA结构的mRNA寿命,我们证实含有缓慢翻译密码子窗口的mRNA寿命较短。出乎意料的是,与未突变序列相比,这些mrna在小干扰RNA (siRNA)存在时并未表现出稳定性下降,这表明存在不同并发降解机制的干扰。我们采用随机模拟来预测开放阅读框的核糖体密度,发现核糖体密度以细胞类型和密码子位置特异性的方式与mRNA稳定性相关。总之,我们的研究结果表明,密码子选择的影响及其对mRNA寿命的影响与细胞类型、密码子位置和RNA干扰有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of The Royal Society Interface
Journal of The Royal Society Interface 综合性期刊-综合性期刊
CiteScore
7.10
自引率
2.60%
发文量
234
审稿时长
2.5 months
期刊介绍: J. R. Soc. Interface welcomes articles of high quality research at the interface of the physical and life sciences. It provides a high-quality forum to publish rapidly and interact across this boundary in two main ways: J. R. Soc. Interface publishes research applying chemistry, engineering, materials science, mathematics and physics to the biological and medical sciences; it also highlights discoveries in the life sciences of relevance to the physical sciences. Both sides of the interface are considered equally and it is one of the only journals to cover this exciting new territory. J. R. Soc. Interface welcomes contributions on a diverse range of topics, including but not limited to; biocomplexity, bioengineering, bioinformatics, biomaterials, biomechanics, bionanoscience, biophysics, chemical biology, computer science (as applied to the life sciences), medical physics, synthetic biology, systems biology, theoretical biology and tissue engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信