Comprehensive chemoanatomical mapping, and the gonadal regulation, of seven kisspeptin neuronal populations in the mouse brain.

IF 3.3 4区 医学 Q2 ENDOCRINOLOGY & METABOLISM
Vito S Hernández, Mario A Zetter, Oscar R Hernández-Pérez, Rafael Hernández-González, Ignacio Camacho-Arroyo, Robert P Millar, Lee E Eiden, Limei Zhang
{"title":"Comprehensive chemoanatomical mapping, and the gonadal regulation, of seven kisspeptin neuronal populations in the mouse brain.","authors":"Vito S Hernández, Mario A Zetter, Oscar R Hernández-Pérez, Rafael Hernández-González, Ignacio Camacho-Arroyo, Robert P Millar, Lee E Eiden, Limei Zhang","doi":"10.1111/jne.70019","DOIUrl":null,"url":null,"abstract":"<p><p>Kisspeptinergic signaling is well-established as crucial for the regulation of reproduction, but its potential broader role in brain function is less understood. This study investigates the distribution and chemotyping of kisspeptin-expressing neurons within the mouse brain. RNAscope single, dual, and multiplex in situ hybridization methods were used to assess kisspeptin mRNA (Kiss1) expression and its co-expression with other neuropeptides, excitatory and inhibitory neurotransmitter markers, and sex steroid receptors in wild-type intact and gonadectomized young adult mice. Seven distinct kisspeptin neuronal chemotypes were characterized, including two novel kisspeptin-expressing groups described for the first time, that is, the Kiss1 population in the ventral premammillary nucleus and the nucleus of the solitary tract. Kiss1 mRNA was also observed to localize in both somatic and dendritic compartments of hypothalamic neurons. High androgen receptor expression and changes in medial amygdala and septo-hypothalamic Kiss1 expression following GDX in males, but not in females, suggest a role for androgen receptors in regulating kisspeptin signaling. This study provides a detailed chemoanatomical map of kisspeptin-expressing neurons, highlighting their potential functional diversity. The discovery of a new kisspeptin-expressing group and gonadectomy-induced changes in Kiss1 expression patterns suggest broader roles for kisspeptin in brain functions beyond those of reproduction.</p>","PeriodicalId":16535,"journal":{"name":"Journal of Neuroendocrinology","volume":" ","pages":"e70019"},"PeriodicalIF":3.3000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroendocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/jne.70019","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Kisspeptinergic signaling is well-established as crucial for the regulation of reproduction, but its potential broader role in brain function is less understood. This study investigates the distribution and chemotyping of kisspeptin-expressing neurons within the mouse brain. RNAscope single, dual, and multiplex in situ hybridization methods were used to assess kisspeptin mRNA (Kiss1) expression and its co-expression with other neuropeptides, excitatory and inhibitory neurotransmitter markers, and sex steroid receptors in wild-type intact and gonadectomized young adult mice. Seven distinct kisspeptin neuronal chemotypes were characterized, including two novel kisspeptin-expressing groups described for the first time, that is, the Kiss1 population in the ventral premammillary nucleus and the nucleus of the solitary tract. Kiss1 mRNA was also observed to localize in both somatic and dendritic compartments of hypothalamic neurons. High androgen receptor expression and changes in medial amygdala and septo-hypothalamic Kiss1 expression following GDX in males, but not in females, suggest a role for androgen receptors in regulating kisspeptin signaling. This study provides a detailed chemoanatomical map of kisspeptin-expressing neurons, highlighting their potential functional diversity. The discovery of a new kisspeptin-expressing group and gonadectomy-induced changes in Kiss1 expression patterns suggest broader roles for kisspeptin in brain functions beyond those of reproduction.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Neuroendocrinology
Journal of Neuroendocrinology 医学-内分泌学与代谢
CiteScore
6.40
自引率
6.20%
发文量
137
审稿时长
4-8 weeks
期刊介绍: Journal of Neuroendocrinology provides the principal international focus for the newest ideas in classical neuroendocrinology and its expanding interface with the regulation of behavioural, cognitive, developmental, degenerative and metabolic processes. Through the rapid publication of original manuscripts and provocative review articles, it provides essential reading for basic scientists and clinicians researching in this rapidly expanding field. In determining content, the primary considerations are excellence, relevance and novelty. While Journal of Neuroendocrinology reflects the broad scientific and clinical interests of the BSN membership, the editorial team, led by Professor Julian Mercer, ensures that the journal’s ethos, authorship, content and purpose are those expected of a leading international publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信