Enhancing seed yield and nitrogen use efficiency of Brassica napus L. under low nitrogen by overexpression of G-proteins from Arabidopsis thaliana.

IF 5.6 2区 生物学 Q1 PLANT SCIENCES
Yuyu Xie, Yunyou Nan, Ayub Atif, Derong Shi, Hui Tian, Jing Hui, Yanfeng Zhang, Alan M Jones, Yajun Gao
{"title":"Enhancing seed yield and nitrogen use efficiency of Brassica napus L. under low nitrogen by overexpression of G-proteins from Arabidopsis thaliana.","authors":"Yuyu Xie, Yunyou Nan, Ayub Atif, Derong Shi, Hui Tian, Jing Hui, Yanfeng Zhang, Alan M Jones, Yajun Gao","doi":"10.1093/jxb/eraf130","DOIUrl":null,"url":null,"abstract":"<p><p>Heterotrimeric G-proteins, composed of Gα, Gβ, and Gγ subunits, are involved in the regulation of multiple signaling pathways in plants. OsDEP1 (Gγ subunit-encoded protein) of rice and TaNBP1 (Gβ subunit-encoded protein) of wheat are homologs of Arabidopsis AGG3 and AGB1, respectively, which are regulators of grain size and also involved in nitrogen responses. However, the function of Arabidopsis G-proteins in nitrogen utilization under different nitrogen conditions has not been fully investigated. In this study, to evaluate the role of Arabidopsis G-proteins towards yield and nitrogen use efficiency (NUE), overexpressing transgenic lines AtGPA1, AtAGB1 together with AtAGG1 (AGB1-AGG1), with AtAGG2 (AGB1-AGG2), and with AtAGG3 (AGB1-AGG3) were created in the \"K407\" Brassica napus (B. napus). Analysis of multiple transgenic B. napus lines showed that overexpression of GPA1, AGB1-AGG1, AGB1-AGG2, or AGB1-AGG3 increased the biomass of seedling plants including a well-developed root system and increased nitrogen uptake under low and high nitrogen conditions. The activity of glutamine synthetase (GS), a key nitrogen assimilating enzyme, as well as the expression levels of genes that are involved in nitrogen uptake and assimilation were significantly increased in overexpressing plants under low nitrogen conditions. These properties enabled overexpressing plants to increase the number of seeds per silique by 12%-27% only under low nitrogen condition, effectively improving yield per plant by 9%-69% and NUE by 7%-49%. These results reveal roles of G-proteins in regulating seed traits and NUE, and provide a strategy that can substantially improve crop yield and NUE.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jxb/eraf130","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Heterotrimeric G-proteins, composed of Gα, Gβ, and Gγ subunits, are involved in the regulation of multiple signaling pathways in plants. OsDEP1 (Gγ subunit-encoded protein) of rice and TaNBP1 (Gβ subunit-encoded protein) of wheat are homologs of Arabidopsis AGG3 and AGB1, respectively, which are regulators of grain size and also involved in nitrogen responses. However, the function of Arabidopsis G-proteins in nitrogen utilization under different nitrogen conditions has not been fully investigated. In this study, to evaluate the role of Arabidopsis G-proteins towards yield and nitrogen use efficiency (NUE), overexpressing transgenic lines AtGPA1, AtAGB1 together with AtAGG1 (AGB1-AGG1), with AtAGG2 (AGB1-AGG2), and with AtAGG3 (AGB1-AGG3) were created in the "K407" Brassica napus (B. napus). Analysis of multiple transgenic B. napus lines showed that overexpression of GPA1, AGB1-AGG1, AGB1-AGG2, or AGB1-AGG3 increased the biomass of seedling plants including a well-developed root system and increased nitrogen uptake under low and high nitrogen conditions. The activity of glutamine synthetase (GS), a key nitrogen assimilating enzyme, as well as the expression levels of genes that are involved in nitrogen uptake and assimilation were significantly increased in overexpressing plants under low nitrogen conditions. These properties enabled overexpressing plants to increase the number of seeds per silique by 12%-27% only under low nitrogen condition, effectively improving yield per plant by 9%-69% and NUE by 7%-49%. These results reveal roles of G-proteins in regulating seed traits and NUE, and provide a strategy that can substantially improve crop yield and NUE.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Experimental Botany
Journal of Experimental Botany 生物-植物科学
CiteScore
12.30
自引率
4.30%
发文量
450
审稿时长
1.9 months
期刊介绍: The Journal of Experimental Botany publishes high-quality primary research and review papers in the plant sciences. These papers cover a range of disciplines from molecular and cellular physiology and biochemistry through whole plant physiology to community physiology. Full-length primary papers should contribute to our understanding of how plants develop and function, and should provide new insights into biological processes. The journal will not publish purely descriptive papers or papers that report a well-known process in a species in which the process has not been identified previously. Articles should be concise and generally limited to 10 printed pages.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信