Unraveling cation-cation "attraction" in argentophilic interaction in 2,2'-bipydine coordinated silver complex.

IF 3.1 2区 化学 Q3 CHEMISTRY, PHYSICAL
Yuan Xu
{"title":"Unraveling cation-cation \"attraction\" in argentophilic interaction in 2,2'-bipydine coordinated silver complex.","authors":"Yuan Xu","doi":"10.1063/5.0258704","DOIUrl":null,"url":null,"abstract":"<p><p>The nature of argentophilic interaction in the 2,2'-bipyridine-coordinated silver complex, which manifests counterintuitive cation-cation \"attraction,\" is attributed to ligand stacking and solvation effects in the present article. While charged closed-shell transition metal complexes aggregating spontaneously to form oligomers has long been observed experimentally, the interpretation of the nature of so-called metallophilicity is still ongoing. For the dimer [(2,2'-bpy)2Ag]22+, qualitative electrostatic potential, non-covalent interaction, atoms-in-molecules analyses, and quantitative energy decomposition analysis calculations indicate that the electrostatic repulsion between two like formal charges at silver centers can be overcome by long-range dispersion attraction and short-range electronic correlation from ligands. In addition, delocalizing the net charges on silvers over the whole ligands can decrease electrostatic repulsion of metal centers to stabilize oligomers. The vital role of the screening effect of solvent has also been realized in the bound binding of the title system. Overall, this research highlights the importance of ligand stacking to argentophilicity, while d10-d10 attraction of silver centers presents quite little contribution.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"162 11","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0258704","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The nature of argentophilic interaction in the 2,2'-bipyridine-coordinated silver complex, which manifests counterintuitive cation-cation "attraction," is attributed to ligand stacking and solvation effects in the present article. While charged closed-shell transition metal complexes aggregating spontaneously to form oligomers has long been observed experimentally, the interpretation of the nature of so-called metallophilicity is still ongoing. For the dimer [(2,2'-bpy)2Ag]22+, qualitative electrostatic potential, non-covalent interaction, atoms-in-molecules analyses, and quantitative energy decomposition analysis calculations indicate that the electrostatic repulsion between two like formal charges at silver centers can be overcome by long-range dispersion attraction and short-range electronic correlation from ligands. In addition, delocalizing the net charges on silvers over the whole ligands can decrease electrostatic repulsion of metal centers to stabilize oligomers. The vital role of the screening effect of solvent has also been realized in the bound binding of the title system. Overall, this research highlights the importance of ligand stacking to argentophilicity, while d10-d10 attraction of silver centers presents quite little contribution.

揭示2,2'-联吡啶配位银络合物中亲银相互作用中的阳离子-阳离子“吸引力”。
2,2'-联吡啶配位银配合物中亲银相互作用的性质,表现出反直觉的阳离子“吸引力”,在本文中被归因于配体堆叠和溶剂化效应。虽然带电的闭壳过渡金属配合物自发聚集形成低聚物的实验早已被观察到,但对所谓的亲金性性质的解释仍在进行中。对于二聚体[(2,2’-bpy)2Ag]22+,定性静电势、非共价相互作用、分子中原子分析和定量能量分解分析计算表明,银中心两个类似形式电荷之间的静电排斥可以通过远程色散吸引和配体的短程电子相关来克服。此外,将银上的净电荷离域到整个配体上可以减少金属中心的静电斥力,从而稳定低聚物。溶剂的筛选作用在标题系统的装订中也起到了至关重要的作用。总的来说,本研究强调了配体堆叠对亲银性的重要性,而银中心的d10-d10吸引力的贡献很小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Chemical Physics
Journal of Chemical Physics 物理-物理:原子、分子和化学物理
CiteScore
7.40
自引率
15.90%
发文量
1615
审稿时长
2 months
期刊介绍: The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance. Topical coverage includes: Theoretical Methods and Algorithms Advanced Experimental Techniques Atoms, Molecules, and Clusters Liquids, Glasses, and Crystals Surfaces, Interfaces, and Materials Polymers and Soft Matter Biological Molecules and Networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信