The immunogenic potential of an optimized mRNA lipid nanoparticle formulation carrying sequences from virus and protozoan antigens.

IF 10.6 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Renata S Fernandes, Gabriela de Assis Burle-Caldas, Sarah Aparecida Rodrigues Sergio, Ana Flávia Bráz, Nathália Pereira da Silva Leite, Milton Pereira, Juliana de Oliveira Silva, Natália Satchiko Hojo-Souza, Bianca de Oliveira, Ana Paula S Moura Fernandes, Flávio Guimarães da Fonseca, Ricardo Tostes Gazzinelli, Diego Dos Santos Ferreira, Santuza M Ribeiro Teixeira
{"title":"The immunogenic potential of an optimized mRNA lipid nanoparticle formulation carrying sequences from virus and protozoan antigens.","authors":"Renata S Fernandes, Gabriela de Assis Burle-Caldas, Sarah Aparecida Rodrigues Sergio, Ana Flávia Bráz, Nathália Pereira da Silva Leite, Milton Pereira, Juliana de Oliveira Silva, Natália Satchiko Hojo-Souza, Bianca de Oliveira, Ana Paula S Moura Fernandes, Flávio Guimarães da Fonseca, Ricardo Tostes Gazzinelli, Diego Dos Santos Ferreira, Santuza M Ribeiro Teixeira","doi":"10.1186/s12951-025-03201-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Lipid nanoparticles (LNP) are a safe and effective messenger RNA (mRNA) delivery system for vaccine applications, as shown by the COVID-19 mRNA vaccines. One of the main challenges faced during the development of these vaccines is the production of new and versatile LNP formulations capable of efficient encapsulation and delivery to cells in vivo. This study aimed to develop a new mRNA vaccine formulation that could potentially be used against existing diseases as well as those caused by pathogens that emerge every year.</p><p><strong>Results: </strong>Using firefly luciferase (Luc) as a reporter mRNA, we evaluated the physical-chemical properties, stability, and biodistribution of an LNP-mRNA formulation produced using a novel lipid composition and a microfluidic organic-aqueous precipitation method. Using mRNAs encoding a dengue virus or a Leishmania infantum antigen, we evaluated the immunogenicity of LNP-mRNA formulations and compared them with the immunization with the corresponding recombinant protein or plasmid-encoded antigens. For all tested LNP-mRNAs, mRNA encapsulation efficiency was higher than 85%, their diameter was around 100 nm, and their polydispersity index was less than 0.3. Following an intramuscular injection of 10 µg of the LNP-Luc formulation in mice, we detected luciferase activity in the injection site, as well as in the liver and spleen, as early as 6 h post-administration. LNPs containing mRNA encoding virus and parasite antigens were highly immunogenic, as shown by levels of antigen-specific IgG antibody as well as IFN-γ production by splenocytes of immunized animals that were similar to the levels that resulted from immunization with the corresponding recombinant protein or plasmid DNA.</p><p><strong>Conclusions: </strong>Altogether, these results indicate that these novel LNP-mRNA formulations are highly immunogenic and may be used as novel vaccine candidates for different infectious diseases.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"23 1","pages":"221"},"PeriodicalIF":10.6000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11921523/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-025-03201-8","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Lipid nanoparticles (LNP) are a safe and effective messenger RNA (mRNA) delivery system for vaccine applications, as shown by the COVID-19 mRNA vaccines. One of the main challenges faced during the development of these vaccines is the production of new and versatile LNP formulations capable of efficient encapsulation and delivery to cells in vivo. This study aimed to develop a new mRNA vaccine formulation that could potentially be used against existing diseases as well as those caused by pathogens that emerge every year.

Results: Using firefly luciferase (Luc) as a reporter mRNA, we evaluated the physical-chemical properties, stability, and biodistribution of an LNP-mRNA formulation produced using a novel lipid composition and a microfluidic organic-aqueous precipitation method. Using mRNAs encoding a dengue virus or a Leishmania infantum antigen, we evaluated the immunogenicity of LNP-mRNA formulations and compared them with the immunization with the corresponding recombinant protein or plasmid-encoded antigens. For all tested LNP-mRNAs, mRNA encapsulation efficiency was higher than 85%, their diameter was around 100 nm, and their polydispersity index was less than 0.3. Following an intramuscular injection of 10 µg of the LNP-Luc formulation in mice, we detected luciferase activity in the injection site, as well as in the liver and spleen, as early as 6 h post-administration. LNPs containing mRNA encoding virus and parasite antigens were highly immunogenic, as shown by levels of antigen-specific IgG antibody as well as IFN-γ production by splenocytes of immunized animals that were similar to the levels that resulted from immunization with the corresponding recombinant protein or plasmid DNA.

Conclusions: Altogether, these results indicate that these novel LNP-mRNA formulations are highly immunogenic and may be used as novel vaccine candidates for different infectious diseases.

携带病毒和原生动物抗原序列的优化mRNA脂质纳米颗粒配方的免疫原性潜力。
背景:正如COVID-19 mRNA疫苗所显示的那样,脂质纳米颗粒(LNP)是一种安全有效的疫苗应用信使RNA (mRNA)递送系统。在这些疫苗的开发过程中面临的主要挑战之一是生产新的多功能LNP配方,能够有效地包封并在体内递送到细胞中。这项研究旨在开发一种新的mRNA疫苗配方,这种疫苗可能用于对抗现有疾病以及每年出现的病原体引起的疾病。结果:利用萤火虫荧光素酶(Luc)作为报告mRNA,我们评估了一种使用新型脂质成分和微流体有机水沉淀法生产的LNP-mRNA配方的物理化学性质、稳定性和生物分布。使用编码登革热病毒或婴儿利什曼原虫抗原的mrna,我们评估了LNP-mRNA配方的免疫原性,并将其与相应的重组蛋白或质粒编码抗原的免疫接种进行了比较。所有lnp -mRNA的mRNA包封率均在85%以上,直径在100 nm左右,多分散性指数均小于0.3。在小鼠肌肉注射10µg LNP-Luc制剂后,我们检测了早在给药后6小时注射部位以及肝脏和脾脏的荧光素酶活性。含有编码病毒和寄生虫抗原的mRNA的LNPs具有高度的免疫原性,免疫动物的抗原特异性IgG抗体水平和脾细胞产生的IFN-γ水平与用相应的重组蛋白或质粒DNA免疫产生的水平相似。结论:总之,这些结果表明,这些新的LNP-mRNA制剂具有高度的免疫原性,可能用作不同传染病的新型候选疫苗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Nanobiotechnology
Journal of Nanobiotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
13.90
自引率
4.90%
发文量
493
审稿时长
16 weeks
期刊介绍: Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信