Biomimetic gold nano-modulator for deep-tumor NIR-II photothermal immunotherapy via gaseous microenvironment remodeling strategy.

IF 10.6 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Honglin Huang, Zhengxin Xie, Ningxi Li, Li Zeng, Qianyi Zeng, Ziman Yang, Jinyang Shen, Hong Yang, Yiyao Liu, Chunhui Wu
{"title":"Biomimetic gold nano-modulator for deep-tumor NIR-II photothermal immunotherapy via gaseous microenvironment remodeling strategy.","authors":"Honglin Huang, Zhengxin Xie, Ningxi Li, Li Zeng, Qianyi Zeng, Ziman Yang, Jinyang Shen, Hong Yang, Yiyao Liu, Chunhui Wu","doi":"10.1186/s12951-025-03304-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Effective immunotherapeutic treatment of solid tumors has been greatly challenged by the complex hostile tumor immunosuppressive microenvironment (TIME), which typically involves hypoxia and immunosuppression.</p><p><strong>Methods: </strong>Herein, a multifunctional biomimetic gold nano-modulator (denoted as GNR-SNO@MMT) was developed to realize the efficient second near-infrared (NIR-II) photothermal immunotherapy via tumor targeting and deep penetration, vascular normalization and immune reprogramming. NIR-II photothermal agent gold nanorods (GNR) were grafted with thermosensitive S-nitrosothiol (SNO) donors and camouflaged with the tumor-penetrating peptide tLyp-1-modified macrophage membrane (MM) to yield GNR-SNO@MMT.</p><p><strong>Results: </strong>The engineered membrane coating increased the capacity for tumor inflammatory tropism and deep penetration, which aided GNR-SNO@MMT in ablating tumors together with NIR-II laser irradiation. Moreover, hyperthermia-stimulated nitric oxide (NO) release in situ acted as a gas immunomodulator to effectively enhance blood perfusion and reprogram the TIME via multiple functions (e.g., decreasing PD-L1, repolarizing tumor-associated macrophages, and revitalizing cytotoxic T cells). Ultimately, the inhibition rate against 4T1 mouse mammary tumor model mediated by GNR-SNO@MMT plus NIR-II laser was 94.7% together with 2.4-fold CD8<sup>+</sup> T cells infiltrated into tumors than that of the untreated counterpart.</p><p><strong>Conclusions: </strong>The engineered biomimetic nano-modulator of GNR-SNO@MMT provides an effective and novel photoimmunotherapy candidate against deep-sited solid tumors through immune reconfiguration via NO-involved nanomedicine and external NIR-II laser assistance.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"23 1","pages":"220"},"PeriodicalIF":10.6000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11921542/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-025-03304-2","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Effective immunotherapeutic treatment of solid tumors has been greatly challenged by the complex hostile tumor immunosuppressive microenvironment (TIME), which typically involves hypoxia and immunosuppression.

Methods: Herein, a multifunctional biomimetic gold nano-modulator (denoted as GNR-SNO@MMT) was developed to realize the efficient second near-infrared (NIR-II) photothermal immunotherapy via tumor targeting and deep penetration, vascular normalization and immune reprogramming. NIR-II photothermal agent gold nanorods (GNR) were grafted with thermosensitive S-nitrosothiol (SNO) donors and camouflaged with the tumor-penetrating peptide tLyp-1-modified macrophage membrane (MM) to yield GNR-SNO@MMT.

Results: The engineered membrane coating increased the capacity for tumor inflammatory tropism and deep penetration, which aided GNR-SNO@MMT in ablating tumors together with NIR-II laser irradiation. Moreover, hyperthermia-stimulated nitric oxide (NO) release in situ acted as a gas immunomodulator to effectively enhance blood perfusion and reprogram the TIME via multiple functions (e.g., decreasing PD-L1, repolarizing tumor-associated macrophages, and revitalizing cytotoxic T cells). Ultimately, the inhibition rate against 4T1 mouse mammary tumor model mediated by GNR-SNO@MMT plus NIR-II laser was 94.7% together with 2.4-fold CD8+ T cells infiltrated into tumors than that of the untreated counterpart.

Conclusions: The engineered biomimetic nano-modulator of GNR-SNO@MMT provides an effective and novel photoimmunotherapy candidate against deep-sited solid tumors through immune reconfiguration via NO-involved nanomedicine and external NIR-II laser assistance.

基于气体微环境重塑策略的深部肿瘤NIR-II光热免疫治疗仿生金纳米调节剂。
摘要:复杂的恶性肿瘤免疫抑制微环境(TIME)对实体瘤的有效免疫治疗提出了很大的挑战,该环境通常涉及缺氧和免疫抑制。方法:研制了一种多功能仿生金纳米调节剂(GNR-SNO@MMT),通过肿瘤靶向和深穿透、血管正常化和免疫重编程实现高效的二次近红外(NIR-II)光热免疫治疗。将NIR-II光热剂金纳米棒(GNR)与热敏性s -亚硝基硫醇(SNO)供体移植,并用肿瘤穿透肽tlypp -1修饰的巨噬细胞膜(MM)伪装,得到GNR-SNO@MMT.Results:工程膜涂层增加了肿瘤的炎症倾向和深度穿透能力,这有助于GNR-SNO@MMT与NIR-II激光照射一起消融肿瘤。此外,高温刺激的一氧化氮(NO)原位释放作为一种气体免疫调节剂,通过多种功能(如降低PD-L1、肿瘤相关巨噬细胞重极化和活化细胞毒性T细胞)有效地增强血液灌注和重编程时间。最终,GNR-SNO@MMT + NIR-II激光对4T1小鼠乳腺肿瘤模型的抑制率为94.7%,CD8+ T细胞浸润率为未治疗组的2.4倍。结论:工程仿生纳米调节剂GNR-SNO@MMT通过no相关纳米药物和外用NIR-II激光辅助的免疫重构,为深部实体肿瘤提供了一种有效的新型光免疫治疗候选药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Nanobiotechnology
Journal of Nanobiotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
13.90
自引率
4.90%
发文量
493
审稿时长
16 weeks
期刊介绍: Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信