Hydrogen-bond induced non-linear size dependence of lysozyme under the influence of aqueous glyceline.

IF 3.1 2区 化学 Q3 CHEMISTRY, PHYSICAL
Ivy Das Sarkar, Arnab Sil, Biswajit Guchhait, Suman Das
{"title":"Hydrogen-bond induced non-linear size dependence of lysozyme under the influence of aqueous glyceline.","authors":"Ivy Das Sarkar, Arnab Sil, Biswajit Guchhait, Suman Das","doi":"10.1063/5.0251283","DOIUrl":null,"url":null,"abstract":"<p><p>Natural deep eutectic solvents (NADESs) are environmentally friendly green solvents and hold great promise in the pharmaceutical industry. The secondary structure of a protein, lysozyme, follows a non-monotonous behavior in aqueous glyceline (choline chloride + glycerol) as the wt. % of water is increased. However, it is unclear how the hydration affects the stability of the protein in a non-linear way. In this work, we have performed all-atom molecular dynamic simulations for 1 μs with the lysozyme protein in an aqueous glyceline deep eutectic solvent (DES) by varying the wt. % of water. The simulated radius of gyration, Rg, values can qualitatively reproduce the protein behavior such that the Rg increases initially with an increase in wt. % of water, reaches the peak at 40 wt. %, and then gradually decreases with dilution. Several other properties, including root mean square deviation, root-mean square fluctuation, secondary structure of the protein, and solvent accessible surface area, are examined to explore the NADES effect on the protein structure. Next, we analyze the hydrogen bond profile of intra-protein and among various interspecies, e.g., protein-DES, DES-DES, protein-water, and water-water. The variation in protein-protein hydrogen bonds with concentrations can qualitatively explain the non-linear conformational dependence of the protein. The radial distribution function analyses show various microscopic structures formed due to the DES and water interaction, which play a critical role in protein behavior. This study indicates that at lower wt. % of water, the protein is constrained in a strong hydrogen bond network formed by glycerol and water molecules, resulting in a lower Rg. As the wt. % of water increases, the protein-water interaction drives the protein to expand, reflecting an increasing Rg. At sufficiently higher wt. % of water, the DES constituent and the water molecules interact strongly with the protein, resulting in a decrease in Rg. Overall, the investigation offers a microscopic insight into the protein conformation in DES.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"162 11","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0251283","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Natural deep eutectic solvents (NADESs) are environmentally friendly green solvents and hold great promise in the pharmaceutical industry. The secondary structure of a protein, lysozyme, follows a non-monotonous behavior in aqueous glyceline (choline chloride + glycerol) as the wt. % of water is increased. However, it is unclear how the hydration affects the stability of the protein in a non-linear way. In this work, we have performed all-atom molecular dynamic simulations for 1 μs with the lysozyme protein in an aqueous glyceline deep eutectic solvent (DES) by varying the wt. % of water. The simulated radius of gyration, Rg, values can qualitatively reproduce the protein behavior such that the Rg increases initially with an increase in wt. % of water, reaches the peak at 40 wt. %, and then gradually decreases with dilution. Several other properties, including root mean square deviation, root-mean square fluctuation, secondary structure of the protein, and solvent accessible surface area, are examined to explore the NADES effect on the protein structure. Next, we analyze the hydrogen bond profile of intra-protein and among various interspecies, e.g., protein-DES, DES-DES, protein-water, and water-water. The variation in protein-protein hydrogen bonds with concentrations can qualitatively explain the non-linear conformational dependence of the protein. The radial distribution function analyses show various microscopic structures formed due to the DES and water interaction, which play a critical role in protein behavior. This study indicates that at lower wt. % of water, the protein is constrained in a strong hydrogen bond network formed by glycerol and water molecules, resulting in a lower Rg. As the wt. % of water increases, the protein-water interaction drives the protein to expand, reflecting an increasing Rg. At sufficiently higher wt. % of water, the DES constituent and the water molecules interact strongly with the protein, resulting in a decrease in Rg. Overall, the investigation offers a microscopic insight into the protein conformation in DES.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Chemical Physics
Journal of Chemical Physics 物理-物理:原子、分子和化学物理
CiteScore
7.40
自引率
15.90%
发文量
1615
审稿时长
2 months
期刊介绍: The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance. Topical coverage includes: Theoretical Methods and Algorithms Advanced Experimental Techniques Atoms, Molecules, and Clusters Liquids, Glasses, and Crystals Surfaces, Interfaces, and Materials Polymers and Soft Matter Biological Molecules and Networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信