Coherent nonlinear optical response for high-intensity excitation.

IF 3.1 2区 化学 Q3 CHEMISTRY, PHYSICAL
Rishabh Tripathi, Krishna K Maurya, Pradeep Kumar, Bhaskar De, Rohan Singh
{"title":"Coherent nonlinear optical response for high-intensity excitation.","authors":"Rishabh Tripathi, Krishna K Maurya, Pradeep Kumar, Bhaskar De, Rohan Singh","doi":"10.1063/5.0249809","DOIUrl":null,"url":null,"abstract":"<p><p>The calculation of the coherent nonlinear response of a system is essential to correctly interpret results from advanced techniques such as two-dimensional coherent spectroscopy. Usually, even for the simplest systems, such calculations are either performed for low-intensity excitations where perturbative methods are valid and/or by assuming a simplified pulse envelope, such as a δ-function in time. Here, we use the phase-cycling method for the exact calculation of the nonlinear response without making the aforementioned approximations even for high-intensity excitation. We compare the simulation results to several experimental observations to prove the validity of these calculations. The saturation of the photon-echo signal from excitons in a semiconductor quantum well sample is measured. The excitation-intensity dependent measurement shows nonlinear contributions up to twelfth order. Intensity-dependent simulations reproduce this effect without explicitly considering higher-order interactions. In addition, we present simulation results that replicate previously reported experiments with high-intensity excitation of semiconductor quantum dots. By accurately reproducing a variety of phenomena such as higher-order contributions, switching of coherent signals, and changes in photon-echo transients, we prove the efficacy of the phase-cycling method to calculate the coherent nonlinear signal for high-intensity excitation. This method would be particularly useful for systems with multiple, well-separated peaks and/or large inhomogeneities.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"162 11","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0249809","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The calculation of the coherent nonlinear response of a system is essential to correctly interpret results from advanced techniques such as two-dimensional coherent spectroscopy. Usually, even for the simplest systems, such calculations are either performed for low-intensity excitations where perturbative methods are valid and/or by assuming a simplified pulse envelope, such as a δ-function in time. Here, we use the phase-cycling method for the exact calculation of the nonlinear response without making the aforementioned approximations even for high-intensity excitation. We compare the simulation results to several experimental observations to prove the validity of these calculations. The saturation of the photon-echo signal from excitons in a semiconductor quantum well sample is measured. The excitation-intensity dependent measurement shows nonlinear contributions up to twelfth order. Intensity-dependent simulations reproduce this effect without explicitly considering higher-order interactions. In addition, we present simulation results that replicate previously reported experiments with high-intensity excitation of semiconductor quantum dots. By accurately reproducing a variety of phenomena such as higher-order contributions, switching of coherent signals, and changes in photon-echo transients, we prove the efficacy of the phase-cycling method to calculate the coherent nonlinear signal for high-intensity excitation. This method would be particularly useful for systems with multiple, well-separated peaks and/or large inhomogeneities.

高强度激励下的相干非线性光学响应。
系统相干非线性响应的计算对于正确解释二维相干光谱学等先进技术的结果至关重要。通常,即使对于最简单的系统,这样的计算要么是在低强度激励下进行的,其中摄动方法是有效的,要么是通过假设一个简化的脉冲包络,例如时间上的δ函数。在这里,我们使用相位循环方法来精确计算非线性响应,即使在高强度激励下也不需要进行上述近似。我们将模拟结果与几个实验观测结果进行了比较,以证明这些计算的有效性。测量了半导体量子阱样品中激子发出的光子回波信号的饱和度。与激励强度相关的测量显示出高达12阶的非线性贡献。依赖于强度的模拟再现了这种效应,而没有明确考虑高阶相互作用。此外,我们提出的模拟结果重复了先前报道的高强度激发半导体量子点的实验。通过精确再现高阶贡献、相干信号切换和光子回波瞬态变化等多种现象,证明了相位循环法计算高强度激励下相干非线性信号的有效性。这种方法对于具有多个分离良好的峰和/或大不均匀性的系统特别有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Chemical Physics
Journal of Chemical Physics 物理-物理:原子、分子和化学物理
CiteScore
7.40
自引率
15.90%
发文量
1615
审稿时长
2 months
期刊介绍: The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance. Topical coverage includes: Theoretical Methods and Algorithms Advanced Experimental Techniques Atoms, Molecules, and Clusters Liquids, Glasses, and Crystals Surfaces, Interfaces, and Materials Polymers and Soft Matter Biological Molecules and Networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信