A multiple-crosslinked injectable hydrogel for modulating tissue microenvironment and accelerating infected diabetic wound repair.

IF 10.6 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Zhengduo Zhang, Yuanyuan Ding, Huipu Yuan, Chen Rui, Pengfei Fan, Yinwen Ji, Ying Xiao, Jiayong Dai, Lei Li
{"title":"A multiple-crosslinked injectable hydrogel for modulating tissue microenvironment and accelerating infected diabetic wound repair.","authors":"Zhengduo Zhang, Yuanyuan Ding, Huipu Yuan, Chen Rui, Pengfei Fan, Yinwen Ji, Ying Xiao, Jiayong Dai, Lei Li","doi":"10.1186/s12951-025-03285-2","DOIUrl":null,"url":null,"abstract":"<p><p>Elevated oxidative stress and inflammation, bacterial infections, and vascular impairment undoubtedly impede the normal diabetic wound healing process, which has encouraged the development of high-performance dressings for wound management. Herein, a new type of multiple-crosslinked injectable hydrogel, GCP, was developed via the radical polymerization of propenyl groups and the formation of copper‒polyphenol coordination bonds and Schiff base bonds. The copper‒polyphenol coordination and Schiff base bonds in the GCP hydrogel were disrupted in the acidic microenvironment of diabetic wound, resulting in the release of copper ions and protocatechualdehyde (PA) to scavenge reactive oxygen species (ROS), promote angiogenesis and cell migration, and exert antibacterial and anti-inflammatory activities via the CuPA complexes. Consequently, markedly accelerated infected diabetic wounds healing was achieved through this tissue microenvironment remodeling strategy. Moreover, the underlying mechanism of the antibacterial properties was investigated by 16S rRNA sequencing. The results indicated that the CuPA complexes can clearly inhibit the growth and reproduction of S. aureus by downregulating specific genes associated with ABC transporters, hindering bacterial protein synthesis, and enhancing oxidoreductase activity. This innovative hydrogel platform for wound management may inspire new methods for the preparation of high-performance biomedical materials and the treatment of other clinical diseases.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"23 1","pages":"218"},"PeriodicalIF":10.6000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11917161/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-025-03285-2","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Elevated oxidative stress and inflammation, bacterial infections, and vascular impairment undoubtedly impede the normal diabetic wound healing process, which has encouraged the development of high-performance dressings for wound management. Herein, a new type of multiple-crosslinked injectable hydrogel, GCP, was developed via the radical polymerization of propenyl groups and the formation of copper‒polyphenol coordination bonds and Schiff base bonds. The copper‒polyphenol coordination and Schiff base bonds in the GCP hydrogel were disrupted in the acidic microenvironment of diabetic wound, resulting in the release of copper ions and protocatechualdehyde (PA) to scavenge reactive oxygen species (ROS), promote angiogenesis and cell migration, and exert antibacterial and anti-inflammatory activities via the CuPA complexes. Consequently, markedly accelerated infected diabetic wounds healing was achieved through this tissue microenvironment remodeling strategy. Moreover, the underlying mechanism of the antibacterial properties was investigated by 16S rRNA sequencing. The results indicated that the CuPA complexes can clearly inhibit the growth and reproduction of S. aureus by downregulating specific genes associated with ABC transporters, hindering bacterial protein synthesis, and enhancing oxidoreductase activity. This innovative hydrogel platform for wound management may inspire new methods for the preparation of high-performance biomedical materials and the treatment of other clinical diseases.

一种用于调节组织微环境和加速糖尿病感染伤口修复的多重交联注射水凝胶。
氧化应激升高、炎症、细菌感染和血管损伤无疑会阻碍正常的糖尿病伤口愈合过程,这鼓励了用于伤口管理的高性能敷料的发展。本文通过丙烯基自由基聚合和铜-多酚配位键和席夫碱键的形成,制备了一种新型的多交联注射用水凝胶GCP。GCP水凝胶中的铜-多酚配位键和席夫碱键在糖尿病创面的酸性微环境中被破坏,导致铜离子和原儿茶醛(PA)释放,通过CuPA复合物清除活性氧(ROS),促进血管生成和细胞迁移,并发挥抗菌和抗炎作用。因此,通过这种组织微环境重塑策略,显著加速了感染糖尿病伤口的愈合。此外,通过16S rRNA测序研究了其抗菌性能的潜在机制。结果表明,CuPA复合物通过下调与ABC转运蛋白相关的特异性基因,阻碍细菌蛋白合成,增强氧化还原酶活性,明显抑制金黄色葡萄球菌的生长和繁殖。这种创新的伤口管理水凝胶平台可能会为高性能生物医学材料的制备和其他临床疾病的治疗提供新的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Nanobiotechnology
Journal of Nanobiotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
13.90
自引率
4.90%
发文量
493
审稿时长
16 weeks
期刊介绍: Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信