Deep Clustering-Based Metabolic Stratification of Non-Small Cell Lung Cancer Patients Through Integration of Somatic Mutation Profile and Network Propagation Algorithm.

IF 3.9 2区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Xu Luo, Xinpeng Zhang, Dongqing Su, Honghao Li, Min Zou, Yuqiang Xiong, Lei Yang
{"title":"Deep Clustering-Based Metabolic Stratification of Non-Small Cell Lung Cancer Patients Through Integration of Somatic Mutation Profile and Network Propagation Algorithm.","authors":"Xu Luo, Xinpeng Zhang, Dongqing Su, Honghao Li, Min Zou, Yuqiang Xiong, Lei Yang","doi":"10.1007/s12539-025-00699-2","DOIUrl":null,"url":null,"abstract":"<p><p>As a common malignancy of the lower respiratory tract, non-small cell lung cancer (NSCLC) represents a major oncological challenge globally, characterized by high incidence and mortality rates. Recent research highlights the critical involvement of somatic mutations in the onset and development of NSCLC. Stratification of NSCLC patients based on somatic mutation data could facilitate the identification of patients likely to respond to personalized therapeutic strategies. However, stratification of NSCLC patients using somatic mutation data is challenging due to the sparseness of this data. In this study, based on sparse somatic mutation data from 4581 NSCLC patients from the Memorial Sloan Kettering Cancer Center (MSKCC) database, we systematically evaluate the metabolic pathway activity in NSCLC patients through the application of network propagation algorithm and computational biology algorithms. Based on these metabolic pathways associated with prognosis, as recognized through univariate Cox regression analysis, NSCLC patients are stratified using the deep clustering algorithm to explore the optimal classification strategy, thereby establishing biologically meaningful metabolic subtypes of NSCLC patients. The precise NSCLC metabolic subtypes obtained from the network propagation algorithm and deep clustering algorithm are systematically evaluated and validated for survival benefits of immunotherapy. Our research marks progress towards developing a universal approach for classifying NSCLC patients based solely on somatic mutation profiles, employing deep clustering algorithm. The implementation of our research will help to deepen the analysis of NSCLC patients' metabolic subtypes from the perspective of tumor microenvironment, providing a strong basis for the formulation of more precise personalized treatment plans.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Sciences: Computational Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12539-025-00699-2","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

As a common malignancy of the lower respiratory tract, non-small cell lung cancer (NSCLC) represents a major oncological challenge globally, characterized by high incidence and mortality rates. Recent research highlights the critical involvement of somatic mutations in the onset and development of NSCLC. Stratification of NSCLC patients based on somatic mutation data could facilitate the identification of patients likely to respond to personalized therapeutic strategies. However, stratification of NSCLC patients using somatic mutation data is challenging due to the sparseness of this data. In this study, based on sparse somatic mutation data from 4581 NSCLC patients from the Memorial Sloan Kettering Cancer Center (MSKCC) database, we systematically evaluate the metabolic pathway activity in NSCLC patients through the application of network propagation algorithm and computational biology algorithms. Based on these metabolic pathways associated with prognosis, as recognized through univariate Cox regression analysis, NSCLC patients are stratified using the deep clustering algorithm to explore the optimal classification strategy, thereby establishing biologically meaningful metabolic subtypes of NSCLC patients. The precise NSCLC metabolic subtypes obtained from the network propagation algorithm and deep clustering algorithm are systematically evaluated and validated for survival benefits of immunotherapy. Our research marks progress towards developing a universal approach for classifying NSCLC patients based solely on somatic mutation profiles, employing deep clustering algorithm. The implementation of our research will help to deepen the analysis of NSCLC patients' metabolic subtypes from the perspective of tumor microenvironment, providing a strong basis for the formulation of more precise personalized treatment plans.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Interdisciplinary Sciences: Computational Life Sciences
Interdisciplinary Sciences: Computational Life Sciences MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
8.60
自引率
4.20%
发文量
55
期刊介绍: Interdisciplinary Sciences--Computational Life Sciences aims to cover the most recent and outstanding developments in interdisciplinary areas of sciences, especially focusing on computational life sciences, an area that is enjoying rapid development at the forefront of scientific research and technology. The journal publishes original papers of significant general interest covering recent research and developments. Articles will be published rapidly by taking full advantage of internet technology for online submission and peer-reviewing of manuscripts, and then by publishing OnlineFirstTM through SpringerLink even before the issue is built or sent to the printer. The editorial board consists of many leading scientists with international reputation, among others, Luc Montagnier (UNESCO, France), Dennis Salahub (University of Calgary, Canada), Weitao Yang (Duke University, USA). Prof. Dongqing Wei at the Shanghai Jiatong University is appointed as the editor-in-chief; he made important contributions in bioinformatics and computational physics and is best known for his ground-breaking works on the theory of ferroelectric liquids. With the help from a team of associate editors and the editorial board, an international journal with sound reputation shall be created.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信