Accelerated algorithms for source orientation detection and spatiotemporal LCMV beamforming in EEG source localization.

IF 3.2 3区 医学 Q2 NEUROSCIENCES
Frontiers in Neuroscience Pub Date : 2025-03-04 eCollection Date: 2024-01-01 DOI:10.3389/fnins.2024.1505017
Ava Yektaeian Vaziri, Bahador Makkiabadi
{"title":"Accelerated algorithms for source orientation detection and spatiotemporal LCMV beamforming in EEG source localization.","authors":"Ava Yektaeian Vaziri, Bahador Makkiabadi","doi":"10.3389/fnins.2024.1505017","DOIUrl":null,"url":null,"abstract":"<p><p>This paper illustrates the development of two efficient source localization algorithms for electroencephalography (EEG) data, aimed at enhancing real-time brain signal reconstruction while addressing the computational challenges of traditional methods. Accurate EEG source localization is crucial for applications in cognitive neuroscience, neurorehabilitation, and brain-computer interfaces (BCIs). To make significant progress toward precise source orientation detection and improved signal reconstruction, we introduce the Accelerated Linear Constrained Minimum Variance (ALCMV) beamforming toolbox and the Accelerated Brain Source Orientation Detection (AORI) toolbox. The ALCMV algorithm speeds up EEG source reconstruction by utilizing recursive covariance matrix calculations, while AORI simplifies source orientation detection from three dimensions to one, reducing computational load by 66% compared to conventional methods. Using both simulated and real EEG data, we demonstrate that these algorithms maintain high accuracy, with orientation errors below 0.2% and signal reconstruction accuracy within 2%. These findings suggest that the proposed toolboxes represent a substantial advancement in the efficiency and speed of EEG source localization, making them well-suited for real-time neurotechnological applications.</p>","PeriodicalId":12639,"journal":{"name":"Frontiers in Neuroscience","volume":"18 ","pages":"1505017"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11915719/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnins.2024.1505017","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This paper illustrates the development of two efficient source localization algorithms for electroencephalography (EEG) data, aimed at enhancing real-time brain signal reconstruction while addressing the computational challenges of traditional methods. Accurate EEG source localization is crucial for applications in cognitive neuroscience, neurorehabilitation, and brain-computer interfaces (BCIs). To make significant progress toward precise source orientation detection and improved signal reconstruction, we introduce the Accelerated Linear Constrained Minimum Variance (ALCMV) beamforming toolbox and the Accelerated Brain Source Orientation Detection (AORI) toolbox. The ALCMV algorithm speeds up EEG source reconstruction by utilizing recursive covariance matrix calculations, while AORI simplifies source orientation detection from three dimensions to one, reducing computational load by 66% compared to conventional methods. Using both simulated and real EEG data, we demonstrate that these algorithms maintain high accuracy, with orientation errors below 0.2% and signal reconstruction accuracy within 2%. These findings suggest that the proposed toolboxes represent a substantial advancement in the efficiency and speed of EEG source localization, making them well-suited for real-time neurotechnological applications.

脑电信号源定位中源方向检测和时空LCMV波束形成的加速算法。
本文阐述了两种高效脑电图(EEG)数据源定位算法的发展,旨在增强实时脑信号重建,同时解决传统方法的计算挑战。准确的脑电源定位对于认知神经科学、神经康复和脑机接口(bci)的应用至关重要。为了在精确的源方向检测和改进的信号重建方面取得重大进展,我们引入了加速线性约束最小方差(ALCMV)波束形成工具箱和加速脑源方向检测(AORI)工具箱。ALCMV算法利用递归协方差矩阵计算加快了脑电图源重构速度,而AORI算法将源方向检测从三个维度简化为一个维度,与传统方法相比,计算量减少了66%。通过模拟和真实的脑电数据,我们证明了这些算法保持了较高的精度,定位误差在0.2%以下,信号重构精度在2%以内。这些发现表明,所提出的工具箱在脑电图源定位的效率和速度方面取得了实质性的进步,使其非常适合实时神经技术应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Neuroscience
Frontiers in Neuroscience NEUROSCIENCES-
CiteScore
6.20
自引率
4.70%
发文量
2070
审稿时长
14 weeks
期刊介绍: Neural Technology is devoted to the convergence between neurobiology and quantum-, nano- and micro-sciences. In our vision, this interdisciplinary approach should go beyond the technological development of sophisticated methods and should contribute in generating a genuine change in our discipline.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信