Enhanced Dermal Delivery of Nanoparticulate Formulation of Cutibacterium acnes Using Sponge Spicules for Atopic Dermatitis Treatment.

IF 6.6 2区 医学 Q1 NANOSCIENCE & NANOTECHNOLOGY
International Journal of Nanomedicine Pub Date : 2025-03-14 eCollection Date: 2025-01-01 DOI:10.2147/IJN.S509798
Youmei Jin, Chi Zhang, Mengnan Jia, Ming Chen
{"title":"Enhanced Dermal Delivery of Nanoparticulate Formulation of <i>Cutibacterium acnes</i> Using Sponge Spicules for Atopic Dermatitis Treatment.","authors":"Youmei Jin, Chi Zhang, Mengnan Jia, Ming Chen","doi":"10.2147/IJN.S509798","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The pathogenesis of atopic dermatitis (AD) is closely linked to both genetic and environmental factors, with patients often exhibiting a range of immunological abnormalities, including a pronounced Th2-type overreaction, which is a key feature of the disease.</p><p><strong>Purpose: </strong><i>Cutibacterium acnes</i> has been shown to induce a robust Th1 immune response through intraperitoneal injections, potentially preventing the development of AD. In this study, a novel nanoparticulate formulation of <i>Cutibacterium acnes</i> (NFCA) was developed with the formulation optimization for the dermal delivery.</p><p><strong>Materials and methods: </strong>Sponge <i>Haliclona</i> sp. spicules (SHS) were isolated from the explants of sponge <i>Haliclona sp</i>. with our proprietary method. The NFCA was prepared by high-speed grinding followed by film extrusion. The skin penetration of the model drugs in NFCA with SHS were visualized using confocal microscopy. The therapeutic effects of NFCA coupled with SHSs against AD in mice were assessed by using pathohistological examination and cytokine ELISA assay.</p><p><strong>Results: </strong>The NFCA particle size was 254.1±39.4 nm, with a PDI of 0.29±0.08 and a Zeta potential of -7.9±0.6 mV. SHS significantly enhanced total skin absorption of FD10K (39.6±6.7%, <i>p</i>=0.00076) as well as deposition in the viable epidermis (3.2±1.6%, <i>p</i>=0.08) and deep skin (dermis & receptor) (36.0±5.9%, <i>p</i>=1.82E-5) compared to the control. In vitro cytotoxicity tests showed that NFCA had low toxicity to HaCaT cells (IC50=63.8 mg/mL). The study confirmed that NFCA can activate immune signaling pathways, promoting the high expression of IL-6 and IL-8 in keratinocytes, enhancing TNF-α and IL-1β expression in macrophages, and inducing Th1 and Th17-type immune responses. Furthermore, we demonstrated that the dermal delivery of NFCA using SHS in vivo significantly reduced epidermal thickness, serum IgE levels, and tissue IL-4 levels, thereby accelerating skin repair and mitigating Th2 polarization.</p><p><strong>Conclusion: </strong>SHS were employed to effectively deliver NFCA to the deeper skin layers to exert its immune functions. Moreover, the combination of SHS and NFCA can significantly cure mice with atopic dermatitis.</p>","PeriodicalId":14084,"journal":{"name":"International Journal of Nanomedicine","volume":"20 ","pages":"3235-3249"},"PeriodicalIF":6.6000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11917440/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nanomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/IJN.S509798","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: The pathogenesis of atopic dermatitis (AD) is closely linked to both genetic and environmental factors, with patients often exhibiting a range of immunological abnormalities, including a pronounced Th2-type overreaction, which is a key feature of the disease.

Purpose: Cutibacterium acnes has been shown to induce a robust Th1 immune response through intraperitoneal injections, potentially preventing the development of AD. In this study, a novel nanoparticulate formulation of Cutibacterium acnes (NFCA) was developed with the formulation optimization for the dermal delivery.

Materials and methods: Sponge Haliclona sp. spicules (SHS) were isolated from the explants of sponge Haliclona sp. with our proprietary method. The NFCA was prepared by high-speed grinding followed by film extrusion. The skin penetration of the model drugs in NFCA with SHS were visualized using confocal microscopy. The therapeutic effects of NFCA coupled with SHSs against AD in mice were assessed by using pathohistological examination and cytokine ELISA assay.

Results: The NFCA particle size was 254.1±39.4 nm, with a PDI of 0.29±0.08 and a Zeta potential of -7.9±0.6 mV. SHS significantly enhanced total skin absorption of FD10K (39.6±6.7%, p=0.00076) as well as deposition in the viable epidermis (3.2±1.6%, p=0.08) and deep skin (dermis & receptor) (36.0±5.9%, p=1.82E-5) compared to the control. In vitro cytotoxicity tests showed that NFCA had low toxicity to HaCaT cells (IC50=63.8 mg/mL). The study confirmed that NFCA can activate immune signaling pathways, promoting the high expression of IL-6 and IL-8 in keratinocytes, enhancing TNF-α and IL-1β expression in macrophages, and inducing Th1 and Th17-type immune responses. Furthermore, we demonstrated that the dermal delivery of NFCA using SHS in vivo significantly reduced epidermal thickness, serum IgE levels, and tissue IL-4 levels, thereby accelerating skin repair and mitigating Th2 polarization.

Conclusion: SHS were employed to effectively deliver NFCA to the deeper skin layers to exert its immune functions. Moreover, the combination of SHS and NFCA can significantly cure mice with atopic dermatitis.

利用海绵针状体增强痤疮角质杆菌纳米颗粒配方的皮肤递送治疗特应性皮炎。
引言:特应性皮炎(AD)的发病机制与遗传和环境因素密切相关,患者通常表现出一系列免疫异常,包括明显的th2型过度反应,这是该疾病的一个关键特征。目的:痤疮表皮杆菌已被证明通过腹腔注射诱导强大的Th1免疫反应,可能预防AD的发展。在这项研究中,开发了一种新的纳米颗粒配方痤疮角质杆菌(NFCA),并对配方进行了真皮递送优化。材料与方法:采用本发明的方法从海绵海葵(Sponge Haliclona sp.)外植体中分离得到海绵海葵针状体(Sponge Haliclona sp. sps)。采用高速研磨-挤压法制备NFCA。用共聚焦显微镜观察模型药物在NFCA + SHS组的皮肤渗透情况。采用病理组织学检查和细胞因子ELISA法评价NFCA联合SHSs对小鼠AD的治疗作用。结果:NFCA粒径为254.1±39.4 nm, PDI为0.29±0.08,Zeta电位为-7.9±0.6 mV。与对照组相比,SHS显著提高了FD10K的皮肤总吸收量(39.6±6.7%,p=0.00076)以及活皮(3.2±1.6%,p=0.08)和深层皮肤(真皮和受体)的沉积量(36.0±5.9%,p= 1.825 -5)。体外细胞毒性试验表明,NFCA对HaCaT细胞具有低毒性(IC50=63.8 mg/mL)。本研究证实NFCA可以激活免疫信号通路,促进角质形成细胞中IL-6和IL-8的高表达,增强巨噬细胞中TNF-α和IL-1β的表达,诱导Th1和th17型免疫应答。此外,我们证明了在体内使用SHS的NFCA真皮递送可显著降低表皮厚度、血清IgE水平和组织IL-4水平,从而加速皮肤修复并减轻Th2极化。结论:利用SHS可有效地将NFCA输送至深层皮肤,发挥其免疫功能。此外,SHS与NFCA联合治疗小鼠特应性皮炎有显著疗效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Nanomedicine
International Journal of Nanomedicine NANOSCIENCE & NANOTECHNOLOGY-PHARMACOLOGY & PHARMACY
CiteScore
14.40
自引率
3.80%
发文量
511
审稿时长
1.4 months
期刊介绍: The International Journal of Nanomedicine is a globally recognized journal that focuses on the applications of nanotechnology in the biomedical field. It is a peer-reviewed and open-access publication that covers diverse aspects of this rapidly evolving research area. With its strong emphasis on the clinical potential of nanoparticles in disease diagnostics, prevention, and treatment, the journal aims to showcase cutting-edge research and development in the field. Starting from now, the International Journal of Nanomedicine will not accept meta-analyses for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信