Deciphering the morpho-physiological and biochemical response of sunflower hybrids with the application of biochar and slow-release nitrogen fertilizers under drought stress for sustainable crop production.

IF 4.1 2区 生物学 Q1 PLANT SCIENCES
Frontiers in Plant Science Pub Date : 2025-03-04 eCollection Date: 2025-01-01 DOI:10.3389/fpls.2025.1541123
Shabir Hussain, Mehrab Khan, Muhammad Tanveer Altaf, Muhammad Nadeem Shah, Alanoud T Alfagham
{"title":"Deciphering the morpho-physiological and biochemical response of sunflower hybrids with the application of biochar and slow-release nitrogen fertilizers under drought stress for sustainable crop production.","authors":"Shabir Hussain, Mehrab Khan, Muhammad Tanveer Altaf, Muhammad Nadeem Shah, Alanoud T Alfagham","doi":"10.3389/fpls.2025.1541123","DOIUrl":null,"url":null,"abstract":"<p><p>Agriculture problems like drought stress and improper fertilization like overuse of nitrogen fertilizers for maximum productivity are the problem responsible for low yield of crop and environmental pollution. Biochar and slow releasing nitrogen fertilizers (SRNF) application in agriculture are the sustainable practices being used for better crop nutrient management strategies, since the well-recognized environmental problem caused by overusing fertilizers. Biochar also used as tools for sustainable way alleviating drought stress. For this, two-year field study was planned with randomized complete block designed (RCBD) and was replicated three time. Treatments included the two irrigation conditions like normal irrigation (CK) and drought stress (DS), two biochar treatments like biochar (BC) and without biochar (WBC); and three application of SRNF like zinc-coated urea (ZCU), sulfur-coated urea (SCU) and non-coated simple urea (SU). Results revealed that drought stress significantly reduced plant height (20.7%), stem diameter (25.6%), and achene yield (25.9%), while increasing antioxidant activity. Biochar mitigated these effects, increasing plant height by 23.2% and achene yield by 12.0% under drought stress. Among SRNFs, ZCU was most effective, improving photosynthetic rate (18.5%), chlorophyll content (12.3%), and achene yield (19.6%) under drought conditions. The combination of biochar and ZCU improved soil health, water retention, and nutrient efficiency, leading to enhanced plant growth and yield. Statistical analysis confirmed significant differences among treatments.</p>","PeriodicalId":12632,"journal":{"name":"Frontiers in Plant Science","volume":"16 ","pages":"1541123"},"PeriodicalIF":4.1000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11914920/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fpls.2025.1541123","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Agriculture problems like drought stress and improper fertilization like overuse of nitrogen fertilizers for maximum productivity are the problem responsible for low yield of crop and environmental pollution. Biochar and slow releasing nitrogen fertilizers (SRNF) application in agriculture are the sustainable practices being used for better crop nutrient management strategies, since the well-recognized environmental problem caused by overusing fertilizers. Biochar also used as tools for sustainable way alleviating drought stress. For this, two-year field study was planned with randomized complete block designed (RCBD) and was replicated three time. Treatments included the two irrigation conditions like normal irrigation (CK) and drought stress (DS), two biochar treatments like biochar (BC) and without biochar (WBC); and three application of SRNF like zinc-coated urea (ZCU), sulfur-coated urea (SCU) and non-coated simple urea (SU). Results revealed that drought stress significantly reduced plant height (20.7%), stem diameter (25.6%), and achene yield (25.9%), while increasing antioxidant activity. Biochar mitigated these effects, increasing plant height by 23.2% and achene yield by 12.0% under drought stress. Among SRNFs, ZCU was most effective, improving photosynthetic rate (18.5%), chlorophyll content (12.3%), and achene yield (19.6%) under drought conditions. The combination of biochar and ZCU improved soil health, water retention, and nutrient efficiency, leading to enhanced plant growth and yield. Statistical analysis confirmed significant differences among treatments.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Plant Science
Frontiers in Plant Science PLANT SCIENCES-
CiteScore
7.30
自引率
14.30%
发文量
4844
审稿时长
14 weeks
期刊介绍: In an ever changing world, plant science is of the utmost importance for securing the future well-being of humankind. Plants provide oxygen, food, feed, fibers, and building materials. In addition, they are a diverse source of industrial and pharmaceutical chemicals. Plants are centrally important to the health of ecosystems, and their understanding is critical for learning how to manage and maintain a sustainable biosphere. Plant science is extremely interdisciplinary, reaching from agricultural science to paleobotany, and molecular physiology to ecology. It uses the latest developments in computer science, optics, molecular biology and genomics to address challenges in model systems, agricultural crops, and ecosystems. Plant science research inquires into the form, function, development, diversity, reproduction, evolution and uses of both higher and lower plants and their interactions with other organisms throughout the biosphere. Frontiers in Plant Science welcomes outstanding contributions in any field of plant science from basic to applied research, from organismal to molecular studies, from single plant analysis to studies of populations and whole ecosystems, and from molecular to biophysical to computational approaches. Frontiers in Plant Science publishes articles on the most outstanding discoveries across a wide research spectrum of Plant Science. The mission of Frontiers in Plant Science is to bring all relevant Plant Science areas together on a single platform.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信