3D imaging for dental identification: a pilot investigation of a novel segmentation method using an intra oral scanning device.

IF 1.5 4区 医学 Q2 MEDICINE, LEGAL
Harry Perkins, Adam B Rohrlach, Toby Hughes, Alex Forrest, Denice Higgins
{"title":"3D imaging for dental identification: a pilot investigation of a novel segmentation method using an intra oral scanning device.","authors":"Harry Perkins, Adam B Rohrlach, Toby Hughes, Alex Forrest, Denice Higgins","doi":"10.1007/s12024-025-00992-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Forensic dental identification relies on the comparison of antemortem and postmortem dental records. 3D dental imaging presents the potential for detailed anatomical features of teeth to be quantified between individuals in automated identification tools. This study introduces a novel segmentation method to simultaneously remove extraneous data from two images reducing processes and time required during 3D dental image comparisons, and tests this against existing approaches to better understand segmentation techniques for forensic purposes.</p><p><strong>Methods: </strong>Six volunteers had both digital and stone cast full arch dental models created. The casts were scanned and digitized with an intra oral laser scanner, and five different segmentation methods were then applied to all images. Segmented images were compared via a method for aligning 3D images for possible matching (same person) and non-matching (different person) pairings.</p><p><strong>Results: </strong>All segmentation methods removed adequate excess materials to provide consistent repeated outcomes in the comparison process, with the novel segmentation method showing equivalent outcomes with existing methodologies. The findings highlight the importance of understanding the process of segmentation in distinguishing between 3D dental imaging and underscore the potential of 3D imaging technologies in forensic odontology.</p><p><strong>Conclusion: </strong>The study demonstrates the efficacy of a new segmentation method in forensic dental identification, offering a faster approach; calling for further validation of these methods within a legal framework.</p>","PeriodicalId":12449,"journal":{"name":"Forensic Science, Medicine and Pathology","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forensic Science, Medicine and Pathology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12024-025-00992-y","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, LEGAL","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Forensic dental identification relies on the comparison of antemortem and postmortem dental records. 3D dental imaging presents the potential for detailed anatomical features of teeth to be quantified between individuals in automated identification tools. This study introduces a novel segmentation method to simultaneously remove extraneous data from two images reducing processes and time required during 3D dental image comparisons, and tests this against existing approaches to better understand segmentation techniques for forensic purposes.

Methods: Six volunteers had both digital and stone cast full arch dental models created. The casts were scanned and digitized with an intra oral laser scanner, and five different segmentation methods were then applied to all images. Segmented images were compared via a method for aligning 3D images for possible matching (same person) and non-matching (different person) pairings.

Results: All segmentation methods removed adequate excess materials to provide consistent repeated outcomes in the comparison process, with the novel segmentation method showing equivalent outcomes with existing methodologies. The findings highlight the importance of understanding the process of segmentation in distinguishing between 3D dental imaging and underscore the potential of 3D imaging technologies in forensic odontology.

Conclusion: The study demonstrates the efficacy of a new segmentation method in forensic dental identification, offering a faster approach; calling for further validation of these methods within a legal framework.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Forensic Science, Medicine and Pathology
Forensic Science, Medicine and Pathology MEDICINE, LEGAL-PATHOLOGY
CiteScore
3.90
自引率
5.60%
发文量
114
审稿时长
6-12 weeks
期刊介绍: Forensic Science, Medicine and Pathology encompasses all aspects of modern day forensics, equally applying to children or adults, either living or the deceased. This includes forensic science, medicine, nursing, and pathology, as well as toxicology, human identification, mass disasters/mass war graves, profiling, imaging, policing, wound assessment, sexual assault, anthropology, archeology, forensic search, entomology, botany, biology, veterinary pathology, and DNA. Forensic Science, Medicine, and Pathology presents a balance of forensic research and reviews from around the world to reflect modern advances through peer-reviewed papers, short communications, meeting proceedings and case reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信