TMBIM-2 orchestrates systemic mitochondrial stress response via facilitating Ca2+ oscillations.

IF 7.4 1区 生物学 Q1 CELL BIOLOGY
Journal of Cell Biology Pub Date : 2025-05-05 Epub Date: 2025-03-18 DOI:10.1083/jcb.202408050
Jiasheng Li, Jimeng Cui, Xinyu Li, Di Zhu, Zhenhua Chen, Xiahe Huang, Yingchun Wang, Qingfeng Wu, Ye Tian
{"title":"TMBIM-2 orchestrates systemic mitochondrial stress response via facilitating Ca2+ oscillations.","authors":"Jiasheng Li, Jimeng Cui, Xinyu Li, Di Zhu, Zhenhua Chen, Xiahe Huang, Yingchun Wang, Qingfeng Wu, Ye Tian","doi":"10.1083/jcb.202408050","DOIUrl":null,"url":null,"abstract":"<p><p>Neuronal mitochondrial function is critical for orchestrating inter-tissue communication essential for overall fitness. Despite its significance, the molecular mechanism underlying the impact of prolonged mitochondrial stresses on neuronal activity and how they orchestrate metabolism and aging remains elusive. Here, we identified the evolutionarily conserved transmembrane protein XBX-6/TMBIM-2 as a key mediator in the neuronal-to-intestinal mitochondrial unfolded protein response (UPRmt). Our investigations reveal that intrinsic neuronal mitochondrial stress triggers spatiotemporal Ca2+ oscillations in a TMBIM-2-dependent manner through the Ca2+ efflux pump MCA-3. Notably, persistent Ca2+ oscillations at synapses of ADF neurons are critical for facilitating serotonin release and the subsequent activation of the neuronal-to-intestinal UPRmt. TMBIM2 expression diminishes with age; however, its overexpression counteracts the age-related decline in aversive learning behavior and extends the lifespan of Caenorhabditis elegans. These findings underscore the intricate integration of chronic neuronal mitochondrial stress into neurotransmission processes via TMBIM-2-dependent Ca2+ equilibrium, driving metabolic adaptation and behavioral changes for the regulation of aging.</p>","PeriodicalId":15211,"journal":{"name":"Journal of Cell Biology","volume":"224 5","pages":""},"PeriodicalIF":7.4000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11917168/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1083/jcb.202408050","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Neuronal mitochondrial function is critical for orchestrating inter-tissue communication essential for overall fitness. Despite its significance, the molecular mechanism underlying the impact of prolonged mitochondrial stresses on neuronal activity and how they orchestrate metabolism and aging remains elusive. Here, we identified the evolutionarily conserved transmembrane protein XBX-6/TMBIM-2 as a key mediator in the neuronal-to-intestinal mitochondrial unfolded protein response (UPRmt). Our investigations reveal that intrinsic neuronal mitochondrial stress triggers spatiotemporal Ca2+ oscillations in a TMBIM-2-dependent manner through the Ca2+ efflux pump MCA-3. Notably, persistent Ca2+ oscillations at synapses of ADF neurons are critical for facilitating serotonin release and the subsequent activation of the neuronal-to-intestinal UPRmt. TMBIM2 expression diminishes with age; however, its overexpression counteracts the age-related decline in aversive learning behavior and extends the lifespan of Caenorhabditis elegans. These findings underscore the intricate integration of chronic neuronal mitochondrial stress into neurotransmission processes via TMBIM-2-dependent Ca2+ equilibrium, driving metabolic adaptation and behavioral changes for the regulation of aging.

TMBIM-2通过促进Ca2+振荡协调全身性线粒体应激反应。
神经元线粒体功能对于协调组织间通信至关重要,这对整体健康至关重要。尽管其意义重大,但长期线粒体应激对神经元活动影响的分子机制以及它们如何协调代谢和衰老仍然难以捉摸。在这里,我们确定了进化上保守的跨膜蛋白XBX-6/ tmbim2是神经元到肠道线粒体未折叠蛋白反应(UPRmt)的关键介质。我们的研究表明,内在神经元线粒体应激通过Ca2+外排泵MCA-3以tmbim -2依赖的方式触发时空Ca2+振荡。值得注意的是,ADF神经元突触上持续的Ca2+振荡对于促进血清素释放和随后神经元-肠道UPRmt的激活至关重要。TMBIM2的表达随着年龄的增长而降低;然而,它的过度表达抵消了与年龄相关的厌恶学习行为的下降,并延长了秀丽隐杆线虫的寿命。这些发现强调了慢性神经元线粒体应激通过tmbim -2依赖性Ca2+平衡进入神经传递过程的复杂整合,驱动代谢适应和行为改变以调节衰老。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Cell Biology
Journal of Cell Biology 生物-细胞生物学
CiteScore
12.60
自引率
2.60%
发文量
213
审稿时长
1 months
期刊介绍: The Journal of Cell Biology (JCB) is a comprehensive journal dedicated to publishing original discoveries across all realms of cell biology. We invite papers presenting novel cellular or molecular advancements in various domains of basic cell biology, along with applied cell biology research in diverse systems such as immunology, neurobiology, metabolism, virology, developmental biology, and plant biology. We enthusiastically welcome submissions showcasing significant findings of interest to cell biologists, irrespective of the experimental approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信