Medial septum deep brain stimulation enhances memory and hippocampal neurogenesis in the D-galactose induced rat model of aging: behavioral and immunohistochemical study.

IF 1.7 4区 医学 Q4 NEUROSCIENCES
Ekaterine E Kipiani, Maia A Burjanadze, Manana G Dashniani, Nino C Chkhikvishvili, Temur L Naneishvili, Mariam R Chighladze, Barbare G Nozadze, Gela V Beselia
{"title":"Medial septum deep brain stimulation enhances memory and hippocampal neurogenesis in the D-galactose induced rat model of aging: behavioral and immunohistochemical study.","authors":"Ekaterine E Kipiani, Maia A Burjanadze, Manana G Dashniani, Nino C Chkhikvishvili, Temur L Naneishvili, Mariam R Chighladze, Barbare G Nozadze, Gela V Beselia","doi":"10.1007/s00221-025-07051-6","DOIUrl":null,"url":null,"abstract":"<p><p>One of the cardinal features of aging is brain aging, which manifests itself in impaired cognitive functions. Experimental data suggest that deep brain stimulation (DBS) can improve memory functions when stimulating specific brain regions. In present study we tested the hypothesis that medial septum (MS) DBS enhances memory function by modulating the hippocampal neurogenesis in the D-galactose (D-gal) induced rat model of aging. Rats were randomly assigned to four experimental groups: (1) control, (2) administration of D-gal, (3) administration of D-gal and electrode implantation and (4) administration of D-gal, electrode implantation and stimulation. Our results showed that MS DBS significantly enhanced the memory functions in an animal model of aging induced by D-gal administration, which impaired long-term spatial memory in the Morris water maze and impaired spatial and object novelty recognition memory in the open field. The immunohistochemical studies showed that in the Dentate Gyrus (DG) of rats with D-gal administration or D-gal combined with electrode implantation, the number of NeuN (neuronal nuclear antigen) or Doublecortin-immunopositive cells decreased (Doublecortin - a biomarker for the post-mitotic phase of cells); MS stimulation increases the number of these cells in the DG to levels comparable to the control group. Thus, MS-DBS restores the level of hippocampal neurogenesis. The present data demonstrate for the first time that chronic DBS of the MS restores memory functions in a D-gal-induced animal model of aging, and that one of the important underlying mechanisms is mediated by enhanced neurogenesis in the hippocampus.</p>","PeriodicalId":12268,"journal":{"name":"Experimental Brain Research","volume":"243 4","pages":"95"},"PeriodicalIF":1.7000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Brain Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00221-025-07051-6","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

One of the cardinal features of aging is brain aging, which manifests itself in impaired cognitive functions. Experimental data suggest that deep brain stimulation (DBS) can improve memory functions when stimulating specific brain regions. In present study we tested the hypothesis that medial septum (MS) DBS enhances memory function by modulating the hippocampal neurogenesis in the D-galactose (D-gal) induced rat model of aging. Rats were randomly assigned to four experimental groups: (1) control, (2) administration of D-gal, (3) administration of D-gal and electrode implantation and (4) administration of D-gal, electrode implantation and stimulation. Our results showed that MS DBS significantly enhanced the memory functions in an animal model of aging induced by D-gal administration, which impaired long-term spatial memory in the Morris water maze and impaired spatial and object novelty recognition memory in the open field. The immunohistochemical studies showed that in the Dentate Gyrus (DG) of rats with D-gal administration or D-gal combined with electrode implantation, the number of NeuN (neuronal nuclear antigen) or Doublecortin-immunopositive cells decreased (Doublecortin - a biomarker for the post-mitotic phase of cells); MS stimulation increases the number of these cells in the DG to levels comparable to the control group. Thus, MS-DBS restores the level of hippocampal neurogenesis. The present data demonstrate for the first time that chronic DBS of the MS restores memory functions in a D-gal-induced animal model of aging, and that one of the important underlying mechanisms is mediated by enhanced neurogenesis in the hippocampus.

内侧隔深部脑刺激可增强 D-半乳糖诱导衰老模型大鼠的记忆力和海马神经发生:行为和免疫组化研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.60
自引率
5.00%
发文量
228
审稿时长
1 months
期刊介绍: Founded in 1966, Experimental Brain Research publishes original contributions on many aspects of experimental research of the central and peripheral nervous system. The focus is on molecular, physiology, behavior, neurochemistry, developmental, cellular and molecular neurobiology, and experimental pathology relevant to general problems of cerebral function. The journal publishes original papers, reviews, and mini-reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信