Evaluation of herbicide formulations and spreading agents on survival of the bumblebee Bombus impatiens following spray and contact exposure.

IF 2.4 4区 环境科学与生态学 Q2 ECOLOGY
Ryleigh V Gelles, Thomas S Davis
{"title":"Evaluation of herbicide formulations and spreading agents on survival of the bumblebee Bombus impatiens following spray and contact exposure.","authors":"Ryleigh V Gelles, Thomas S Davis","doi":"10.1007/s10646-025-02876-x","DOIUrl":null,"url":null,"abstract":"<p><p>Surfactants are often included as co-formulants in the application of herbicides to aid in spreading and adherence to plant surfaces, but toxicity to native bees has not been extensively tested. In a set of progressive experiments, we evaluated effects of products containing glyphosate and spreading agents, as well as spreading agents alone, on bumblebees (Bombus impatiens Cresson) using parametric survival analysis. We test spreaders from multiple chemical classes including Silwet L-77© (trisiloxane), Alligare 90© (polyoxyethylene), and Southern Ag SA-50© (C10-16 alcohols). We report low lethality of high-glyphosate herbicide formulations (Rodeo©), but bee mortality increased ~20% with addition of a silicone-based spreading agent (Silwet L-77©). Spreaders alone strongly affected bee survival: effects were concentration-specific and did not differ depending on exposure method (spray application vs. application to surfaces contacted by bees). The widely used trisiloxane-based spreader Silwet L-77© was especially hazardous, and exposure to high concentrations of Silwet L-77© caused rapid and near-total mortality in B. impatiens. Analysis of whole-bee cuticle extracts after exposure revealed clear differences in the cuticular hydrocarbon profiles associated with exposure to spreading agents: the alkane n-hexacosane was present in all extracts but was detected in greater relative abundance from bees exposed to Silwet L-77© and Alligare 90©. To support wild bee conservation efforts, we recommend substituting alcohol-based spreaders for siloxane-based spreaders when possible. In addition, certain cuticular hydrocarbons may be useful as biomarkers of previous exposure to certain surfactants, which can aid investigations evaluating causes of bumblebee decline across landscapes.</p>","PeriodicalId":11497,"journal":{"name":"Ecotoxicology","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecotoxicology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10646-025-02876-x","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Surfactants are often included as co-formulants in the application of herbicides to aid in spreading and adherence to plant surfaces, but toxicity to native bees has not been extensively tested. In a set of progressive experiments, we evaluated effects of products containing glyphosate and spreading agents, as well as spreading agents alone, on bumblebees (Bombus impatiens Cresson) using parametric survival analysis. We test spreaders from multiple chemical classes including Silwet L-77© (trisiloxane), Alligare 90© (polyoxyethylene), and Southern Ag SA-50© (C10-16 alcohols). We report low lethality of high-glyphosate herbicide formulations (Rodeo©), but bee mortality increased ~20% with addition of a silicone-based spreading agent (Silwet L-77©). Spreaders alone strongly affected bee survival: effects were concentration-specific and did not differ depending on exposure method (spray application vs. application to surfaces contacted by bees). The widely used trisiloxane-based spreader Silwet L-77© was especially hazardous, and exposure to high concentrations of Silwet L-77© caused rapid and near-total mortality in B. impatiens. Analysis of whole-bee cuticle extracts after exposure revealed clear differences in the cuticular hydrocarbon profiles associated with exposure to spreading agents: the alkane n-hexacosane was present in all extracts but was detected in greater relative abundance from bees exposed to Silwet L-77© and Alligare 90©. To support wild bee conservation efforts, we recommend substituting alcohol-based spreaders for siloxane-based spreaders when possible. In addition, certain cuticular hydrocarbons may be useful as biomarkers of previous exposure to certain surfactants, which can aid investigations evaluating causes of bumblebee decline across landscapes.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Ecotoxicology
Ecotoxicology 环境科学-毒理学
CiteScore
5.30
自引率
3.70%
发文量
107
审稿时长
4.7 months
期刊介绍: Ecotoxicology is an international journal devoted to the publication of fundamental research on the effects of toxic chemicals on populations, communities and terrestrial, freshwater and marine ecosystems. It aims to elucidate mechanisms and processes whereby chemicals exert their effects on ecosystems and the impact caused at the population or community level. The journal is not biased with respect to taxon or biome, and papers that indicate possible new approaches to regulation and control of toxic chemicals and those aiding in formulating ways of conserving threatened species are particularly welcome. Studies on individuals should demonstrate linkage to population effects in clear and quantitative ways. Laboratory studies must show a clear linkage to specific field situations. The journal includes not only original research papers but technical notes and review articles, both invited and submitted. A strong, broadly based editorial board ensures as wide an international coverage as possible.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信