Interpretation of Change in Novel Digital Measures: A Statistical Review and Tutorial.

Q1 Computer Science
Digital Biomarkers Pub Date : 2025-02-03 eCollection Date: 2025-01-01 DOI:10.1159/000543899
Andrew Trigg, Bohdana Ratitch, Frank Kruesmann, Madhurima Majumder, Andrejus Parfionovas, Ulrike Krahn
{"title":"Interpretation of Change in Novel Digital Measures: A Statistical Review and Tutorial.","authors":"Andrew Trigg, Bohdana Ratitch, Frank Kruesmann, Madhurima Majumder, Andrejus Parfionovas, Ulrike Krahn","doi":"10.1159/000543899","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Novel clinical measures assessed by a digital health technology tool require thresholds to interpret change over time, such as the minimal clinically important difference. Establishing such thresholds is a key component of clinical validation, facilitating understanding of relevant treatment effects.</p><p><strong>Summary: </strong>Many of the approaches to derive interpretative thresholds for patient-reported outcomes can be applied to digital clinical measures. We present theoretical background to the use of interpretative thresholds, including the distinction between thresholds based on perceived importance versus measurement error, and thresholds for group- versus individual-level interpretations. We then review methods to estimate such thresholds, including anchor-based approaches. We illustrate the methods using data on cough frequency counts as measured by a wearable device in a clinical trial.</p><p><strong>Key messages: </strong>This paper provides an overview of statistical methodologies to estimate thresholds for the interpretation of change.</p>","PeriodicalId":11242,"journal":{"name":"Digital Biomarkers","volume":"9 1","pages":"52-66"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11919315/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Biomarkers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000543899","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Novel clinical measures assessed by a digital health technology tool require thresholds to interpret change over time, such as the minimal clinically important difference. Establishing such thresholds is a key component of clinical validation, facilitating understanding of relevant treatment effects.

Summary: Many of the approaches to derive interpretative thresholds for patient-reported outcomes can be applied to digital clinical measures. We present theoretical background to the use of interpretative thresholds, including the distinction between thresholds based on perceived importance versus measurement error, and thresholds for group- versus individual-level interpretations. We then review methods to estimate such thresholds, including anchor-based approaches. We illustrate the methods using data on cough frequency counts as measured by a wearable device in a clinical trial.

Key messages: This paper provides an overview of statistical methodologies to estimate thresholds for the interpretation of change.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Digital Biomarkers
Digital Biomarkers Medicine-Medicine (miscellaneous)
CiteScore
10.60
自引率
0.00%
发文量
12
审稿时长
23 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信