Lisa Weixler, Roko Žaja, Nonso J Ikenga, Jonas Siefert, Ganga Mohan, Gülcan Aydin, Sven Wijngaarden, Dmitri V Filippov, Bernhard Lüscher, Karla L H Feijs-Žaja
{"title":"Family-wide analysis of human macrodomains reveals novel activities and identifies PARG as most efficient ADPr-RNA hydrolase.","authors":"Lisa Weixler, Roko Žaja, Nonso J Ikenga, Jonas Siefert, Ganga Mohan, Gülcan Aydin, Sven Wijngaarden, Dmitri V Filippov, Bernhard Lüscher, Karla L H Feijs-Žaja","doi":"10.1038/s42003-025-07901-7","DOIUrl":null,"url":null,"abstract":"<p><p>ADP-ribosylation is well-known as protein posttranslational modification and was recently also identified as RNA posttranscriptional modification. When macrodomain proteins were identified as protein ADP-ribosylhydrolases, several ADP-ribosylation substrates were not yet identified. Therefore, the majority of macrodomain-containing proteins have not been tested towards these additional substrates and were considered to be inactive. Here, we compare in vitro activities of the human macrodomains on a range of ADP-ribosylated substrates. We confirm recent findings that PARP9macro1 and PARP14macro1 can remove ADP-ribose from acidic residues and provide evidence that also PARP14macro2 and PARP15macro2 can function as ADP-ribosylhydrolases. In addition, we find that both PARP9macro1 and PARP14macro1 are active as ADPr-RNA decapping protein domains. Notwithstanding these in vitro activities, our data furthermore indicate that in HEK293 cells, PARG is the major ADPr-RNA decapping enzyme. Our findings thus expand the spectrum of known catalytic activities of human macrodomains and demonstrate their different efficiencies towards nucleic acid substrates.</p>","PeriodicalId":10552,"journal":{"name":"Communications Biology","volume":"8 1","pages":"453"},"PeriodicalIF":5.2000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11920425/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s42003-025-07901-7","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
ADP-ribosylation is well-known as protein posttranslational modification and was recently also identified as RNA posttranscriptional modification. When macrodomain proteins were identified as protein ADP-ribosylhydrolases, several ADP-ribosylation substrates were not yet identified. Therefore, the majority of macrodomain-containing proteins have not been tested towards these additional substrates and were considered to be inactive. Here, we compare in vitro activities of the human macrodomains on a range of ADP-ribosylated substrates. We confirm recent findings that PARP9macro1 and PARP14macro1 can remove ADP-ribose from acidic residues and provide evidence that also PARP14macro2 and PARP15macro2 can function as ADP-ribosylhydrolases. In addition, we find that both PARP9macro1 and PARP14macro1 are active as ADPr-RNA decapping protein domains. Notwithstanding these in vitro activities, our data furthermore indicate that in HEK293 cells, PARG is the major ADPr-RNA decapping enzyme. Our findings thus expand the spectrum of known catalytic activities of human macrodomains and demonstrate their different efficiencies towards nucleic acid substrates.
期刊介绍:
Communications Biology is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the biological sciences. Research papers published by the journal represent significant advances bringing new biological insight to a specialized area of research.