Adoption of an in-silico analysis approach to assess the functional and structural impacts of rpoB-encoded protein mutations on Chlamydia pneumoniae sensitivity to antibiotics.

IF 4 2区 生物学 Q2 MICROBIOLOGY
Sanae Esskhayry, Ichrak Benamri, Afaf Lamzouri, Ouafae Kaissi, Rachida Fissoune, Ahmed Moussa, Fouzia Radouani
{"title":"Adoption of an in-silico analysis approach to assess the functional and structural impacts of rpoB-encoded protein mutations on Chlamydia pneumoniae sensitivity to antibiotics.","authors":"Sanae Esskhayry, Ichrak Benamri, Afaf Lamzouri, Ouafae Kaissi, Rachida Fissoune, Ahmed Moussa, Fouzia Radouani","doi":"10.1186/s12866-025-03860-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Antibiotics are frequently used to treat infections caused by Chlamydia pneumoniae; an obligate intracellular gram-negative bacterium commonly associated with respiratory diseases. However, improper or overuse of these drugs has raised concerns about the development of antibiotic resistance, which poses a significant global health challenge. Previous studies have revealed a link between mutations in the rpoB-encoded protein of C. pneumoniae and antibiotic resistance. This study assessed these mutations via various bioinformatics tools to predict their impact on function, structural stability, antibiotic binding, and, ultimately, their effect on bacterial sensitivity to antibiotics.</p><p><strong>Results: </strong>Eight mutations in the rpoB-encoded protein (R421S, F450S, L456I, S454F, D461E, S476F, L478S, and S519Y) are associated with resistance to rifampin and rifalazil. These mutations occur in conserved regions of the protein, leading to decreased stability and affecting essential functional sites of RNA polymerase, the target of these antibiotics. Although the structural differences between the native and mutant proteins are minimal, notable changes in local hydrogen bonding have been observed. Despite similar binding energies, variations in hydrogen bonds and hydrophobic interactions in certain mutants (for instance, D461E for rifalazil and S476F for rifampin) indicate that these changes may diminish ligand affinity and specificity. Furthermore, protein-protein network analysis demonstrated a strong correlation between wild-type rpoB and ten C. pneumoniae proteins, each fulfilling specific functional roles. Consequently, some of these mutations can reduce the bacterium's sensitivity to rifampin and rifalazil, thereby contributing to antibiotic resistance.</p><p><strong>Conclusion: </strong>The findings of this study indicate that mutations in the rpoB gene, which encodes the beta subunit of RNA polymerase, are pivotal in the resistance of C. pneumoniae to rifampin and rifalazil. Some of these mutations may result in reduced protein stability and changes in the structure, function, and antibiotic binding. As a consequence, the efficacy of these drugs in inhibiting RNA polymerase is compromised, allowing the bacteria to persist in transcription and replication even in the presence of antibiotics. Overall, these insights enhance our understanding of the resistance mechanisms in C. pneumoniae and could guide the development of strategies to address this challenge.</p><p><strong>Clinical trial number: </strong>Not applicable.</p>","PeriodicalId":9233,"journal":{"name":"BMC Microbiology","volume":"25 1","pages":"157"},"PeriodicalIF":4.0000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11921668/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12866-025-03860-5","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Antibiotics are frequently used to treat infections caused by Chlamydia pneumoniae; an obligate intracellular gram-negative bacterium commonly associated with respiratory diseases. However, improper or overuse of these drugs has raised concerns about the development of antibiotic resistance, which poses a significant global health challenge. Previous studies have revealed a link between mutations in the rpoB-encoded protein of C. pneumoniae and antibiotic resistance. This study assessed these mutations via various bioinformatics tools to predict their impact on function, structural stability, antibiotic binding, and, ultimately, their effect on bacterial sensitivity to antibiotics.

Results: Eight mutations in the rpoB-encoded protein (R421S, F450S, L456I, S454F, D461E, S476F, L478S, and S519Y) are associated with resistance to rifampin and rifalazil. These mutations occur in conserved regions of the protein, leading to decreased stability and affecting essential functional sites of RNA polymerase, the target of these antibiotics. Although the structural differences between the native and mutant proteins are minimal, notable changes in local hydrogen bonding have been observed. Despite similar binding energies, variations in hydrogen bonds and hydrophobic interactions in certain mutants (for instance, D461E for rifalazil and S476F for rifampin) indicate that these changes may diminish ligand affinity and specificity. Furthermore, protein-protein network analysis demonstrated a strong correlation between wild-type rpoB and ten C. pneumoniae proteins, each fulfilling specific functional roles. Consequently, some of these mutations can reduce the bacterium's sensitivity to rifampin and rifalazil, thereby contributing to antibiotic resistance.

Conclusion: The findings of this study indicate that mutations in the rpoB gene, which encodes the beta subunit of RNA polymerase, are pivotal in the resistance of C. pneumoniae to rifampin and rifalazil. Some of these mutations may result in reduced protein stability and changes in the structure, function, and antibiotic binding. As a consequence, the efficacy of these drugs in inhibiting RNA polymerase is compromised, allowing the bacteria to persist in transcription and replication even in the presence of antibiotics. Overall, these insights enhance our understanding of the resistance mechanisms in C. pneumoniae and could guide the development of strategies to address this challenge.

Clinical trial number: Not applicable.

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Microbiology
BMC Microbiology 生物-微生物学
CiteScore
7.20
自引率
0.00%
发文量
280
审稿时长
3 months
期刊介绍: BMC Microbiology is an open access, peer-reviewed journal that considers articles on analytical and functional studies of prokaryotic and eukaryotic microorganisms, viruses and small parasites, as well as host and therapeutic responses to them and their interaction with the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信