Muhammad Manzoor, Mushtaq Ahmad, Syed Waseem Gillani, Muhammad Waheed, Hamayun Shaheen, Abdul Basit Mehmood, Beatrice Ambo Fonge, Abeer Al-Andal
{"title":"Population dynamics, threat assessment, and conservation strategies for critically endangered Meconopsis aculeata in alpine zone.","authors":"Muhammad Manzoor, Mushtaq Ahmad, Syed Waseem Gillani, Muhammad Waheed, Hamayun Shaheen, Abdul Basit Mehmood, Beatrice Ambo Fonge, Abeer Al-Andal","doi":"10.1186/s12870-025-06361-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The Himalayan alpine zone harbors a rich diversity of endemic medicinal plant species, such as Meconopsis aculeata, due to its habitat heterogeneity. Globally, alpine environments are most significantly affected by climate change, characterized by low temperatures and restricted growing seasons, offering essential services yet remaining most vulnerable. M. aculeata holds immense ecological significance in alpine ecosystems, while human disturbances and climate change pose serious threats to its long-term viability. The present study was conducted to explore population ecology, spatial distribution patterns, significant threats, diversity patterns along elevational gradients, and future conservation strategies for the dwindling populations of M. aculeata.</p><p><strong>Methods: </strong>Field sampling was carried out from 2022 to 2024 in various districts of Kashmir to examine the vegetation characteristics of M. aculeata populations, along with the geographic variables and threats impacting these populations. The quadrat method was used to investigate the vegetation characteristics across an extensive elevational gradient, ranging from 3000 m to 4600 m.</p><p><strong>Results: </strong>Healthier M. aculeata populations were found in the middle elevational range of 3700 m to 4100 m. The SIMPER analysis revealed an overall average dissimilarity of 80.08, indicating spatial variability in species composition across the studied sites. GIS analysis showed that M. aculeata was found on the north aspect, with steppe slope in rocky habitat. The average herb density was calculated to be 20.6/ha, while 60% of sampled sites experienced intense grazing. A total of 20 indicator species were identified as associated with M. aculeata populations. Mantel tests identified key species influencing the population structure of M. aculeata. Aconitum heterophyllum (R = 0.7954, P = 0.003) was found to be the most critical indicator species, followed by Anaphalis nepalensis (R = 0.6564, P = 0.034), and Bistorta affinis (R = 0.522, P = 0.044). CCA analysis identified NTFP extraction, grazing and fire as serious threats for the sustainability of M. aculeata populations. Alpha diversity results highlight significant altitudinal influences on the diversity metrics of M. aculeata populations. Beta diversity results indicate that Site 8 exhibited substantial differences in species composition compared to other sites, while Sites 1 and 9 highlighted the spatial heterogeneity within the M. aculeata populations. As this species is already classified as a critically endangered species, we recommend implementing effective conservation measures such as habitat restoration, sustainable harvesting practices, involving local communities, and promoting stewardship. These initiatives will encourage sustainable management of the species in the region.</p><p><strong>Clinical trial number: </strong>Not applicable.</p>","PeriodicalId":9198,"journal":{"name":"BMC Plant Biology","volume":"25 1","pages":"358"},"PeriodicalIF":4.3000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11921755/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12870-025-06361-9","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The Himalayan alpine zone harbors a rich diversity of endemic medicinal plant species, such as Meconopsis aculeata, due to its habitat heterogeneity. Globally, alpine environments are most significantly affected by climate change, characterized by low temperatures and restricted growing seasons, offering essential services yet remaining most vulnerable. M. aculeata holds immense ecological significance in alpine ecosystems, while human disturbances and climate change pose serious threats to its long-term viability. The present study was conducted to explore population ecology, spatial distribution patterns, significant threats, diversity patterns along elevational gradients, and future conservation strategies for the dwindling populations of M. aculeata.
Methods: Field sampling was carried out from 2022 to 2024 in various districts of Kashmir to examine the vegetation characteristics of M. aculeata populations, along with the geographic variables and threats impacting these populations. The quadrat method was used to investigate the vegetation characteristics across an extensive elevational gradient, ranging from 3000 m to 4600 m.
Results: Healthier M. aculeata populations were found in the middle elevational range of 3700 m to 4100 m. The SIMPER analysis revealed an overall average dissimilarity of 80.08, indicating spatial variability in species composition across the studied sites. GIS analysis showed that M. aculeata was found on the north aspect, with steppe slope in rocky habitat. The average herb density was calculated to be 20.6/ha, while 60% of sampled sites experienced intense grazing. A total of 20 indicator species were identified as associated with M. aculeata populations. Mantel tests identified key species influencing the population structure of M. aculeata. Aconitum heterophyllum (R = 0.7954, P = 0.003) was found to be the most critical indicator species, followed by Anaphalis nepalensis (R = 0.6564, P = 0.034), and Bistorta affinis (R = 0.522, P = 0.044). CCA analysis identified NTFP extraction, grazing and fire as serious threats for the sustainability of M. aculeata populations. Alpha diversity results highlight significant altitudinal influences on the diversity metrics of M. aculeata populations. Beta diversity results indicate that Site 8 exhibited substantial differences in species composition compared to other sites, while Sites 1 and 9 highlighted the spatial heterogeneity within the M. aculeata populations. As this species is already classified as a critically endangered species, we recommend implementing effective conservation measures such as habitat restoration, sustainable harvesting practices, involving local communities, and promoting stewardship. These initiatives will encourage sustainable management of the species in the region.
期刊介绍:
BMC Plant Biology is an open access, peer-reviewed journal that considers articles on all aspects of plant biology, including molecular, cellular, tissue, organ and whole organism research.