NO-CO Monitoring Technique Using Ultraviolet Absorption Spectroscopy and Tunable Diode Laser Absorption Spectroscopy in High-Temperature and High-Pressure.

IF 2.2 3区 化学 Q2 INSTRUMENTS & INSTRUMENTATION
Wangzheng Zhou, Xiaowei Qin, Zhenzhen Wang, Yoshihiro Deguchi, Daotong Chong, Junjie Yan
{"title":"NO-CO Monitoring Technique Using Ultraviolet Absorption Spectroscopy and Tunable Diode Laser Absorption Spectroscopy in High-Temperature and High-Pressure.","authors":"Wangzheng Zhou, Xiaowei Qin, Zhenzhen Wang, Yoshihiro Deguchi, Daotong Chong, Junjie Yan","doi":"10.1177/00037028251324196","DOIUrl":null,"url":null,"abstract":"<p><p>The single parameter detection of temperature (H<sub>2</sub>O) is no longer sufficient for the absorption combustion diagnosis. There is a huge demand for simultaneous computed tomography (CT) diagnosis of multi-parameters. This paper studied CO and NO, two representative combustion products based on tunable diode laser absorption spectroscopy (TDLAS) and ultraviolet absorption spectroscopy (UVAS). Different from the research on low detection limits, the absorbance needs to be corrected in high-temperature and high-pressure conditions due to the equipment performance of the CT system. A high-temperature and high-pressure chamber system was applied for the basic absorbance experiment. The corrected absorbance databases of 2325.2/2326.8  nm for CO, and 215/226  nm band for NO were established. The corrected absorbance databases were first compared with the HITRAN and ExoMol databases. The accuracy of the corrected databases was also analyzed by standard gas with 1D detection in the high-temperature and high-pressure chamber and two-dimensional (2D) reconstruction in a customed CT cell. The maximum CO mean relative error (MRE) of the 2D results is 2.75% while the maximum NO MRE is 4.99%. This study provides a basis for research on the CO and NO distribution in high-temperature and high-pressure combustion fields.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"37028251324196"},"PeriodicalIF":2.2000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1177/00037028251324196","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

The single parameter detection of temperature (H2O) is no longer sufficient for the absorption combustion diagnosis. There is a huge demand for simultaneous computed tomography (CT) diagnosis of multi-parameters. This paper studied CO and NO, two representative combustion products based on tunable diode laser absorption spectroscopy (TDLAS) and ultraviolet absorption spectroscopy (UVAS). Different from the research on low detection limits, the absorbance needs to be corrected in high-temperature and high-pressure conditions due to the equipment performance of the CT system. A high-temperature and high-pressure chamber system was applied for the basic absorbance experiment. The corrected absorbance databases of 2325.2/2326.8  nm for CO, and 215/226  nm band for NO were established. The corrected absorbance databases were first compared with the HITRAN and ExoMol databases. The accuracy of the corrected databases was also analyzed by standard gas with 1D detection in the high-temperature and high-pressure chamber and two-dimensional (2D) reconstruction in a customed CT cell. The maximum CO mean relative error (MRE) of the 2D results is 2.75% while the maximum NO MRE is 4.99%. This study provides a basis for research on the CO and NO distribution in high-temperature and high-pressure combustion fields.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Spectroscopy
Applied Spectroscopy 工程技术-光谱学
CiteScore
6.60
自引率
5.70%
发文量
139
审稿时长
3.5 months
期刊介绍: Applied Spectroscopy is one of the world''s leading spectroscopy journals, publishing high-quality peer-reviewed articles, both fundamental and applied, covering all aspects of spectroscopy. Established in 1951, the journal is owned by the Society for Applied Spectroscopy and is published monthly. The journal is dedicated to fulfilling the mission of the Society to “…advance and disseminate knowledge and information concerning the art and science of spectroscopy and other allied sciences.”
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信