Shun-Ku Lin, Chien-Kun Su, Melnard Rome C Mercado, Syu-Jyun Peng
{"title":"Developing a deep learning model for the automated monitoring of acupuncture needle insertion: enhancing safety in traditional acupuncture practices.","authors":"Shun-Ku Lin, Chien-Kun Su, Melnard Rome C Mercado, Syu-Jyun Peng","doi":"10.1186/s12906-025-04853-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Acupuncture is a widely practiced traditional therapy, yet safety concerns, particularly needle breakage and retention, remain critical issues that can lead to complications such as infections, organ injury, or chronic pain. This study aimed to develop a deep learning model to monitor acupuncture needle insertion, detect instances of needle breakage, and prevent needle retention, ultimately improving patient safety and treatment outcomes.</p><p><strong>Methods: </strong>A deep learning model based on the YOLOv8 architecture was trained using a dataset comprising 192 images from a commercial image library and 73 clinical images captured during real-world acupuncture sessions. Images were preprocessed through cropping and annotation, and augmented to enhance model generalizability. Five-fold cross-validation was employed to ensure robust performance. Model evaluation metrics included precision, recall, F1 score, and mean average precision (mAP) at Intersection over Union (IoU) thresholds of 50% (mAP@50) and 50-95% (mAP@50-95).</p><p><strong>Results: </strong>The model demonstrated strong performance, achieving an average precision of 88.0% and a recall of 82.9%. The mean average precision was 88.6% at mAP@50 and 62.9% at mAP@50-95, indicating high reliability in detecting acupuncture needles across diverse scenarios. These results highlight the potential of the model to enhance clinical safety by minimizing risks associated with needle breakage and retention, regardless of practitioner experience or patient demographics.</p><p><strong>Conclusions: </strong>The proposed YOLOv8-based deep learning model offers a reliable method for real-time needle monitoring in acupuncture. Its integration into clinical workflows can improve safety and efficiency, especially in underserved regions or settings with less experienced practitioners. Future research should validate the model with larger, more diverse datasets and explore its application in various healthcare settings.</p><p><strong>Trial registration: </strong>Not applicable; this study did not involve a healthcare intervention requiring registration. Data collection adhered to ethical standards with institutional approval (TCHIRB-11310004).</p>","PeriodicalId":9128,"journal":{"name":"BMC Complementary Medicine and Therapies","volume":"25 1","pages":"108"},"PeriodicalIF":3.3000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11917098/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Complementary Medicine and Therapies","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12906-025-04853-7","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INTEGRATIVE & COMPLEMENTARY MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Acupuncture is a widely practiced traditional therapy, yet safety concerns, particularly needle breakage and retention, remain critical issues that can lead to complications such as infections, organ injury, or chronic pain. This study aimed to develop a deep learning model to monitor acupuncture needle insertion, detect instances of needle breakage, and prevent needle retention, ultimately improving patient safety and treatment outcomes.
Methods: A deep learning model based on the YOLOv8 architecture was trained using a dataset comprising 192 images from a commercial image library and 73 clinical images captured during real-world acupuncture sessions. Images were preprocessed through cropping and annotation, and augmented to enhance model generalizability. Five-fold cross-validation was employed to ensure robust performance. Model evaluation metrics included precision, recall, F1 score, and mean average precision (mAP) at Intersection over Union (IoU) thresholds of 50% (mAP@50) and 50-95% (mAP@50-95).
Results: The model demonstrated strong performance, achieving an average precision of 88.0% and a recall of 82.9%. The mean average precision was 88.6% at mAP@50 and 62.9% at mAP@50-95, indicating high reliability in detecting acupuncture needles across diverse scenarios. These results highlight the potential of the model to enhance clinical safety by minimizing risks associated with needle breakage and retention, regardless of practitioner experience or patient demographics.
Conclusions: The proposed YOLOv8-based deep learning model offers a reliable method for real-time needle monitoring in acupuncture. Its integration into clinical workflows can improve safety and efficiency, especially in underserved regions or settings with less experienced practitioners. Future research should validate the model with larger, more diverse datasets and explore its application in various healthcare settings.
Trial registration: Not applicable; this study did not involve a healthcare intervention requiring registration. Data collection adhered to ethical standards with institutional approval (TCHIRB-11310004).