Developing a deep learning model for the automated monitoring of acupuncture needle insertion: enhancing safety in traditional acupuncture practices.

IF 3.3 2区 医学 Q1 INTEGRATIVE & COMPLEMENTARY MEDICINE
Shun-Ku Lin, Chien-Kun Su, Melnard Rome C Mercado, Syu-Jyun Peng
{"title":"Developing a deep learning model for the automated monitoring of acupuncture needle insertion: enhancing safety in traditional acupuncture practices.","authors":"Shun-Ku Lin, Chien-Kun Su, Melnard Rome C Mercado, Syu-Jyun Peng","doi":"10.1186/s12906-025-04853-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Acupuncture is a widely practiced traditional therapy, yet safety concerns, particularly needle breakage and retention, remain critical issues that can lead to complications such as infections, organ injury, or chronic pain. This study aimed to develop a deep learning model to monitor acupuncture needle insertion, detect instances of needle breakage, and prevent needle retention, ultimately improving patient safety and treatment outcomes.</p><p><strong>Methods: </strong>A deep learning model based on the YOLOv8 architecture was trained using a dataset comprising 192 images from a commercial image library and 73 clinical images captured during real-world acupuncture sessions. Images were preprocessed through cropping and annotation, and augmented to enhance model generalizability. Five-fold cross-validation was employed to ensure robust performance. Model evaluation metrics included precision, recall, F1 score, and mean average precision (mAP) at Intersection over Union (IoU) thresholds of 50% (mAP@50) and 50-95% (mAP@50-95).</p><p><strong>Results: </strong>The model demonstrated strong performance, achieving an average precision of 88.0% and a recall of 82.9%. The mean average precision was 88.6% at mAP@50 and 62.9% at mAP@50-95, indicating high reliability in detecting acupuncture needles across diverse scenarios. These results highlight the potential of the model to enhance clinical safety by minimizing risks associated with needle breakage and retention, regardless of practitioner experience or patient demographics.</p><p><strong>Conclusions: </strong>The proposed YOLOv8-based deep learning model offers a reliable method for real-time needle monitoring in acupuncture. Its integration into clinical workflows can improve safety and efficiency, especially in underserved regions or settings with less experienced practitioners. Future research should validate the model with larger, more diverse datasets and explore its application in various healthcare settings.</p><p><strong>Trial registration: </strong>Not applicable; this study did not involve a healthcare intervention requiring registration. Data collection adhered to ethical standards with institutional approval (TCHIRB-11310004).</p>","PeriodicalId":9128,"journal":{"name":"BMC Complementary Medicine and Therapies","volume":"25 1","pages":"108"},"PeriodicalIF":3.3000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11917098/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Complementary Medicine and Therapies","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12906-025-04853-7","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INTEGRATIVE & COMPLEMENTARY MEDICINE","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Acupuncture is a widely practiced traditional therapy, yet safety concerns, particularly needle breakage and retention, remain critical issues that can lead to complications such as infections, organ injury, or chronic pain. This study aimed to develop a deep learning model to monitor acupuncture needle insertion, detect instances of needle breakage, and prevent needle retention, ultimately improving patient safety and treatment outcomes.

Methods: A deep learning model based on the YOLOv8 architecture was trained using a dataset comprising 192 images from a commercial image library and 73 clinical images captured during real-world acupuncture sessions. Images were preprocessed through cropping and annotation, and augmented to enhance model generalizability. Five-fold cross-validation was employed to ensure robust performance. Model evaluation metrics included precision, recall, F1 score, and mean average precision (mAP) at Intersection over Union (IoU) thresholds of 50% (mAP@50) and 50-95% (mAP@50-95).

Results: The model demonstrated strong performance, achieving an average precision of 88.0% and a recall of 82.9%. The mean average precision was 88.6% at mAP@50 and 62.9% at mAP@50-95, indicating high reliability in detecting acupuncture needles across diverse scenarios. These results highlight the potential of the model to enhance clinical safety by minimizing risks associated with needle breakage and retention, regardless of practitioner experience or patient demographics.

Conclusions: The proposed YOLOv8-based deep learning model offers a reliable method for real-time needle monitoring in acupuncture. Its integration into clinical workflows can improve safety and efficiency, especially in underserved regions or settings with less experienced practitioners. Future research should validate the model with larger, more diverse datasets and explore its application in various healthcare settings.

Trial registration: Not applicable; this study did not involve a healthcare intervention requiring registration. Data collection adhered to ethical standards with institutional approval (TCHIRB-11310004).

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Complementary Medicine and Therapies
BMC Complementary Medicine and Therapies INTEGRATIVE & COMPLEMENTARY MEDICINE-
CiteScore
6.10
自引率
2.60%
发文量
300
审稿时长
19 weeks
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信