Antimicrobial Plant Peptides: Structure, Classification, Mechanism And Therapeutic Potential.

IF 2.9 4区 医学 Q3 CHEMISTRY, MEDICINAL
Shaina Shahab Khan, Suaib Luqman
{"title":"Antimicrobial Plant Peptides: Structure, Classification, Mechanism And Therapeutic Potential.","authors":"Shaina Shahab Khan, Suaib Luqman","doi":"10.2174/0115680266345963250121112522","DOIUrl":null,"url":null,"abstract":"<p><p>Humans, animals, and plants possess small polypeptides known as antimicrobial peptides (AMPs), which are often positively charged. They are tiny, mostly basic peptides with a molecular weight of 2 to 9 kDa. They are a crucial part of plants' innate defense system, acting as effector molecules that provide a resistance barrier against pests and diseases. Plants have been found to contain antimicrobial peptides belonging to numerous families, including plant defensins, thionins, cyclotides, and others. An increase in pathogen resistance is achieved through the transgenic overexpression of the relevant genes, while pathogen mutants that are susceptible to peptides exhibit decreased pathogenicity. For many organisms, AMPs exhibit a wide range of antimicrobial activity against various pathogens and serve as a crucial line of defense. This review raises awareness about plant antimicrobial peptides (AMPs) as potential therapeutic agents in the pharmaceutical and medical fields, including treating fungal and bacterial diseases. It also provides a broad synopsis of the main AMP families found in plants, their mechanisms of action, and the factors that influence their antimicrobial activities.</p>","PeriodicalId":11076,"journal":{"name":"Current topics in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current topics in medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115680266345963250121112522","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Humans, animals, and plants possess small polypeptides known as antimicrobial peptides (AMPs), which are often positively charged. They are tiny, mostly basic peptides with a molecular weight of 2 to 9 kDa. They are a crucial part of plants' innate defense system, acting as effector molecules that provide a resistance barrier against pests and diseases. Plants have been found to contain antimicrobial peptides belonging to numerous families, including plant defensins, thionins, cyclotides, and others. An increase in pathogen resistance is achieved through the transgenic overexpression of the relevant genes, while pathogen mutants that are susceptible to peptides exhibit decreased pathogenicity. For many organisms, AMPs exhibit a wide range of antimicrobial activity against various pathogens and serve as a crucial line of defense. This review raises awareness about plant antimicrobial peptides (AMPs) as potential therapeutic agents in the pharmaceutical and medical fields, including treating fungal and bacterial diseases. It also provides a broad synopsis of the main AMP families found in plants, their mechanisms of action, and the factors that influence their antimicrobial activities.

抗菌植物肽:结构、分类、机制和治疗潜力。
人类、动物和植物拥有被称为抗菌肽(AMPs)的小多肽,它们通常带正电荷。它们是微小的碱性肽,分子量为2至9 kDa。它们是植物先天防御系统的重要组成部分,作为效应分子提供抵抗病虫害的屏障。植物已被发现含有许多家族的抗菌肽,包括植物防御素、硫蛋白、环肽等。病原体抗性的增加是通过相关基因的转基因过表达实现的,而对肽敏感的病原体突变体表现出降低的致病性。对于许多生物来说,amp对各种病原体表现出广泛的抗菌活性,并作为关键的防线。本文综述了植物抗菌肽(AMPs)在制药和医疗领域的潜在治疗作用,包括治疗真菌和细菌疾病。它还提供了在植物中发现的主要AMP家族,其作用机制和影响其抗菌活性的因素的广泛概述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.40
自引率
2.90%
发文量
186
审稿时长
3-8 weeks
期刊介绍: Current Topics in Medicinal Chemistry is a forum for the review of areas of keen and topical interest to medicinal chemists and others in the allied disciplines. Each issue is solely devoted to a specific topic, containing six to nine reviews, which provide the reader a comprehensive survey of that area. A Guest Editor who is an expert in the topic under review, will assemble each issue. The scope of Current Topics in Medicinal Chemistry will cover all areas of medicinal chemistry, including current developments in rational drug design, synthetic chemistry, bioorganic chemistry, high-throughput screening, combinatorial chemistry, compound diversity measurements, drug absorption, drug distribution, metabolism, new and emerging drug targets, natural products, pharmacogenomics, and structure-activity relationships. Medicinal chemistry is a rapidly maturing discipline. The study of how structure and function are related is absolutely essential to understanding the molecular basis of life. Current Topics in Medicinal Chemistry aims to contribute to the growth of scientific knowledge and insight, and facilitate the discovery and development of new therapeutic agents to treat debilitating human disorders. The journal is essential for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important advances.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信