Exosomes derived from olfactory mucosa mesenchymal stem cells attenuate cognitive impairment in a mouse model of Alzheimer's disease.

IF 5.7 4区 生物学 Q1 BIOLOGY
Xiqi Hu, Ya-Nan Ma, Jun Peng, Zijie Wang, Yuchang Liang, Ying Xia
{"title":"Exosomes derived from olfactory mucosa mesenchymal stem cells attenuate cognitive impairment in a mouse model of Alzheimer's disease.","authors":"Xiqi Hu, Ya-Nan Ma, Jun Peng, Zijie Wang, Yuchang Liang, Ying Xia","doi":"10.5582/bst.2025.01065","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline, neuroinflammation, and endoplasmic reticulum (ER) stress. In recent years, exosomes have garnered significant attention as a potential therapeutic tool for neurodegenerative diseases. This study, for the first time, investigates the neuroprotective effects of exosomes derived from olfactory mucosa mesenchymal stem cells (OM-MSCs-Exos) in AD and further explore the potential role of low-density lipoprotein receptor-related protein 1 (LRP1) in this process. Using an Aβ1-42-induced AD mouse model, we observed that OM-MSCs-Exos significantly improved cognitive function in behavioral tests, reduced neuroinflammatory responses, alleviated ER stress, and decreased neuronal apoptosis. Further analysis revealed that OM-MSCs-Exos exert neuroprotective effects by modulating the activation of microglia and astrocytes and influencing the ER stress response, a process that may involve LRP1. Although these findings support the potential neuroprotective effects of OM-MSCs-Exos, further studies are required to explore their long-term stability, dose dependency, and immunogenicity to assess their feasibility for clinical applications.</p>","PeriodicalId":8957,"journal":{"name":"Bioscience trends","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioscience trends","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.5582/bst.2025.01065","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline, neuroinflammation, and endoplasmic reticulum (ER) stress. In recent years, exosomes have garnered significant attention as a potential therapeutic tool for neurodegenerative diseases. This study, for the first time, investigates the neuroprotective effects of exosomes derived from olfactory mucosa mesenchymal stem cells (OM-MSCs-Exos) in AD and further explore the potential role of low-density lipoprotein receptor-related protein 1 (LRP1) in this process. Using an Aβ1-42-induced AD mouse model, we observed that OM-MSCs-Exos significantly improved cognitive function in behavioral tests, reduced neuroinflammatory responses, alleviated ER stress, and decreased neuronal apoptosis. Further analysis revealed that OM-MSCs-Exos exert neuroprotective effects by modulating the activation of microglia and astrocytes and influencing the ER stress response, a process that may involve LRP1. Although these findings support the potential neuroprotective effects of OM-MSCs-Exos, further studies are required to explore their long-term stability, dose dependency, and immunogenicity to assess their feasibility for clinical applications.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
13.60
自引率
1.80%
发文量
47
审稿时长
>12 weeks
期刊介绍: BioScience Trends (Print ISSN 1881-7815, Online ISSN 1881-7823) is an international peer-reviewed journal. BioScience Trends devotes to publishing the latest and most exciting advances in scientific research. Articles cover fields of life science such as biochemistry, molecular biology, clinical research, public health, medical care system, and social science in order to encourage cooperation and exchange among scientists and clinical researchers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信