Sustainable Quantum Dot-Vitrimer Composites: A Synergy of Quantum Dots and Dynamic Covalent Bonds.

IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2025-03-18 DOI:10.1002/cssc.202500464
Yong-Yun Zhang, Meng-Yu Lin, Yi-Ting Tsai, Man-Kit Leung, Mu-Huai Fang
{"title":"Sustainable Quantum Dot-Vitrimer Composites: A Synergy of Quantum Dots and Dynamic Covalent Bonds.","authors":"Yong-Yun Zhang, Meng-Yu Lin, Yi-Ting Tsai, Man-Kit Leung, Mu-Huai Fang","doi":"10.1002/cssc.202500464","DOIUrl":null,"url":null,"abstract":"<p><p>Functional nanocomposites combining quantum dots (QDs) and polymers have garnered significant attention due to their unique optical properties. However, the presence of toxic heavy metal ions remains a significant challenge for eco-friendly material development. Here, we introduce the design and fabrication of a quantum-dot-in-vitrimer (QD@vitrimer) nanocomposite that leverages dynamic covalent bonds, providing chemical extractability of the embedded QDs from crosslinked polymers. Unlike commercially available UV-cured resins, our QD@vitrimer nanocomposite demonstrates uniform QD dispersion with minimal aggregation, as confirmed by synchrotron transmission small-angle X-ray scattering and high-resolution scanning transmission electron microscopy. The composites can be degraded via an alcoholysis process driven by built-in catalysts, enabling rapid breakdown and efficient QD extraction under neutral conditions. We achieved 99.9% QD extraction efficiency while preserving the crystal structure and photoluminescence quantum yield of the QDs, significantly enhancing the reusability of these valuable nanomaterials, as verified by inductively coupled plasma optical emission spectrometry and synchrotron X-ray absorption spectroscopy. Finally, we re-fabricated the QD@vitrimer nanocomposite using the recycled QDs, establishing a closed-loop system that extends the material's lifecycle. This work highlights the pioneering strategy for developing chemically recyclable, eco-friendly luminescent nanocomposite, offering a new direction for advancing green materials in advanced applications.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202500464"},"PeriodicalIF":7.5000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202500464","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Functional nanocomposites combining quantum dots (QDs) and polymers have garnered significant attention due to their unique optical properties. However, the presence of toxic heavy metal ions remains a significant challenge for eco-friendly material development. Here, we introduce the design and fabrication of a quantum-dot-in-vitrimer (QD@vitrimer) nanocomposite that leverages dynamic covalent bonds, providing chemical extractability of the embedded QDs from crosslinked polymers. Unlike commercially available UV-cured resins, our QD@vitrimer nanocomposite demonstrates uniform QD dispersion with minimal aggregation, as confirmed by synchrotron transmission small-angle X-ray scattering and high-resolution scanning transmission electron microscopy. The composites can be degraded via an alcoholysis process driven by built-in catalysts, enabling rapid breakdown and efficient QD extraction under neutral conditions. We achieved 99.9% QD extraction efficiency while preserving the crystal structure and photoluminescence quantum yield of the QDs, significantly enhancing the reusability of these valuable nanomaterials, as verified by inductively coupled plasma optical emission spectrometry and synchrotron X-ray absorption spectroscopy. Finally, we re-fabricated the QD@vitrimer nanocomposite using the recycled QDs, establishing a closed-loop system that extends the material's lifecycle. This work highlights the pioneering strategy for developing chemically recyclable, eco-friendly luminescent nanocomposite, offering a new direction for advancing green materials in advanced applications.

可持续量子点-玻璃体复合材料:量子点和动态共价键的协同作用。
将量子点与聚合物结合的功能纳米复合材料因其独特的光学特性而备受关注。然而,有毒重金属离子的存在仍然是环保材料开发的重大挑战。在这里,我们介绍了一种利用动态共价键的量子点玻璃聚合物(QD@vitrimer)纳米复合材料的设计和制造,提供了从交联聚合物中嵌入量子点的化学可提取性。与市售的紫外线固化树脂不同,我们的QD@vitrimer纳米复合材料具有均匀的量子点分散和最小的聚集,正如同步加速器透射小角度x射线散射和高分辨率扫描透射电子显微镜所证实的那样。复合材料可以通过内置催化剂驱动的醇解过程降解,在中性条件下实现快速分解和有效的QD提取。在保留量子点晶体结构和光致发光量子产率的同时,我们实现了99.9%的量子点提取效率,显著提高了这些有价值的纳米材料的可重复使用性,并通过电感耦合等离子体光学发射光谱和同步加速器x射线吸收光谱进行了验证。最后,我们利用回收的量子点重新制造了QD@vitrimer纳米复合材料,建立了一个闭环系统,延长了材料的生命周期。这项工作突出了开发化学可回收、生态友好的发光纳米复合材料的开创性策略,为推进绿色材料的高级应用提供了新的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信