Lipid Metabolism in Diapause.

4区 医学 Q2 Biochemistry, Genetics and Molecular Biology
Umut Toprak, Nicholas M Teets, Doga Cedden, Gözde Güney
{"title":"Lipid Metabolism in Diapause.","authors":"Umut Toprak, Nicholas M Teets, Doga Cedden, Gözde Güney","doi":"10.1007/5584_2025_850","DOIUrl":null,"url":null,"abstract":"<p><p>Organisms living in temperate and polar environments encounter seasonal fluctuations that entail changes in temperature, resource availability, and biotic interactions. Thus, adaptations for synchronizing the life cycle with essential resources and persisting through unfavorable conditions are critical. Diapause, a programmed period of developmental arrest and metabolic depression, is widely used by insects to survive winter and synchronize the life cycle. In some cases, insects spend over half the year (or in some cases, multiple years) in a nonfeeding diapause state. Thus, diapause is energetically challenging, and insects accumulate surplus energy stores and/or suppress metabolism to make it through the winter. As the most energy-dense, and often most abundant, energy reserve in insects, lipids play a central role in diapause energetics. In this chapter, we provide an overview of lipid metabolism in the context of diapause. First, as this is the only chapter in this book that covers diapause, we present some of the general features of diapause. We then discuss the role of lipids as an essential energy store during diapause, focusing on patterns of lipid accumulation before diapause and patterns of utilization during diapause. In the next section, we outline some other roles of lipids during diapause in addition to their role as an energy store. Finally, we end the chapter by discussing the molecular regulation of lipid metabolism in diapause, which has received increased attention in recent years.</p>","PeriodicalId":7270,"journal":{"name":"Advances in experimental medicine and biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in experimental medicine and biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/5584_2025_850","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Organisms living in temperate and polar environments encounter seasonal fluctuations that entail changes in temperature, resource availability, and biotic interactions. Thus, adaptations for synchronizing the life cycle with essential resources and persisting through unfavorable conditions are critical. Diapause, a programmed period of developmental arrest and metabolic depression, is widely used by insects to survive winter and synchronize the life cycle. In some cases, insects spend over half the year (or in some cases, multiple years) in a nonfeeding diapause state. Thus, diapause is energetically challenging, and insects accumulate surplus energy stores and/or suppress metabolism to make it through the winter. As the most energy-dense, and often most abundant, energy reserve in insects, lipids play a central role in diapause energetics. In this chapter, we provide an overview of lipid metabolism in the context of diapause. First, as this is the only chapter in this book that covers diapause, we present some of the general features of diapause. We then discuss the role of lipids as an essential energy store during diapause, focusing on patterns of lipid accumulation before diapause and patterns of utilization during diapause. In the next section, we outline some other roles of lipids during diapause in addition to their role as an energy store. Finally, we end the chapter by discussing the molecular regulation of lipid metabolism in diapause, which has received increased attention in recent years.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in experimental medicine and biology
Advances in experimental medicine and biology 医学-医学:研究与实验
CiteScore
5.90
自引率
0.00%
发文量
465
审稿时长
2-4 weeks
期刊介绍: Advances in Experimental Medicine and Biology provides a platform for scientific contributions in the main disciplines of the biomedicine and the life sciences. This series publishes thematic volumes on contemporary research in the areas of microbiology, immunology, neurosciences, biochemistry, biomedical engineering, genetics, physiology, and cancer research. Covering emerging topics and techniques in basic and clinical science, it brings together clinicians and researchers from various fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信