Hepcidin knockout exacerbates hindlimb unloading-induced bone loss in mice through inhibiting osteoblastic differentiation.

IF 2.2 3区 医学 Q2 ORTHOPEDICS
Xin Chen, Jianping Wang, Chenxiao Zhen, Gejing Zhang, Zhouqi Yang, Youjia Xu, Peng Shang
{"title":"Hepcidin knockout exacerbates hindlimb unloading-induced bone loss in mice through inhibiting osteoblastic differentiation.","authors":"Xin Chen, Jianping Wang, Chenxiao Zhen, Gejing Zhang, Zhouqi Yang, Youjia Xu, Peng Shang","doi":"10.1186/s12891-025-08515-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>An oligopeptide hepcidin is encoded by the human HAMP gene (Hamp in mice). Its deficiency can result in iron overload, while excess may lead to iron deficiency. Hepcidin knockout mice exhibited iron accumulation in multiple tissues, accompanied by degeneration of bone microarchitecture and reduced biomechanical properties. Astronauts who are exposed to weightlessness during prolonged spaceflight experience bone loss. After space missions, an interrelation exists between iron stores and bone mineral density (BMD). Bone loss in mice due to unloading is linked to iron excess and involves hepcidin. The potential role of hepcidin in unloading-induced bone loss remains unclear.</p><p><strong>Methods: </strong>Our study conducted relevant experiments using hepcidin knockout mice and their primary osteoblasts as the research subjects. We used the hindlimb unloading (HLU) model and the random positioning machine (RPM) system to simulate weightlessness in vivo and in vitro.</p><p><strong>Results: </strong>HLU mice exhibited reduced hepcidin levels in the serum and liver. Hepcidin knockout further diminished BMD and bone mineral content (BMC) in the femurs of HLU mice. Similarly, the bone volume fraction (BV/TV) and connectivity density (Conn.Dn) followed this downward trend, whereas trabecular separation (Tb.Sp) showed an inverse pattern. Moreover, hepcidin knockout decreased the ultimate load and elastic modulus in the tibias of HLU mice. Hepcidin knockout decreased PINP levels in the serum, a commonly used marker for bone formation, alongside elevated iron levels in the serum, liver, and bone of HLU mice. We also found higher serum MDA and SOD levels in these mice. In vitro, experimental data indicated that hepcidin knockout suppresses the osteoblastic differentiation capacity under RPM conditions. Additionally, this condition upregulates SOST protein levels and downregulates LRP6 and β-catenin protein levels in osteoblasts.</p><p><strong>Conclusion: </strong>Hepcidin knockout exacerbates bone loss in HLU mice, most likely due to reduced osteoblastic activity.</p>","PeriodicalId":9189,"journal":{"name":"BMC Musculoskeletal Disorders","volume":"26 1","pages":"276"},"PeriodicalIF":2.2000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Musculoskeletal Disorders","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12891-025-08515-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: An oligopeptide hepcidin is encoded by the human HAMP gene (Hamp in mice). Its deficiency can result in iron overload, while excess may lead to iron deficiency. Hepcidin knockout mice exhibited iron accumulation in multiple tissues, accompanied by degeneration of bone microarchitecture and reduced biomechanical properties. Astronauts who are exposed to weightlessness during prolonged spaceflight experience bone loss. After space missions, an interrelation exists between iron stores and bone mineral density (BMD). Bone loss in mice due to unloading is linked to iron excess and involves hepcidin. The potential role of hepcidin in unloading-induced bone loss remains unclear.

Methods: Our study conducted relevant experiments using hepcidin knockout mice and their primary osteoblasts as the research subjects. We used the hindlimb unloading (HLU) model and the random positioning machine (RPM) system to simulate weightlessness in vivo and in vitro.

Results: HLU mice exhibited reduced hepcidin levels in the serum and liver. Hepcidin knockout further diminished BMD and bone mineral content (BMC) in the femurs of HLU mice. Similarly, the bone volume fraction (BV/TV) and connectivity density (Conn.Dn) followed this downward trend, whereas trabecular separation (Tb.Sp) showed an inverse pattern. Moreover, hepcidin knockout decreased the ultimate load and elastic modulus in the tibias of HLU mice. Hepcidin knockout decreased PINP levels in the serum, a commonly used marker for bone formation, alongside elevated iron levels in the serum, liver, and bone of HLU mice. We also found higher serum MDA and SOD levels in these mice. In vitro, experimental data indicated that hepcidin knockout suppresses the osteoblastic differentiation capacity under RPM conditions. Additionally, this condition upregulates SOST protein levels and downregulates LRP6 and β-catenin protein levels in osteoblasts.

Conclusion: Hepcidin knockout exacerbates bone loss in HLU mice, most likely due to reduced osteoblastic activity.

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Musculoskeletal Disorders
BMC Musculoskeletal Disorders 医学-风湿病学
CiteScore
3.80
自引率
8.70%
发文量
1017
审稿时长
3-6 weeks
期刊介绍: BMC Musculoskeletal Disorders is an open access, peer-reviewed journal that considers articles on all aspects of the prevention, diagnosis and management of musculoskeletal disorders, as well as related molecular genetics, pathophysiology, and epidemiology. The scope of the Journal covers research into rheumatic diseases where the primary focus relates specifically to a component(s) of the musculoskeletal system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信