Leonardo L Fruttero, Jimena Leyria, Lilián E Canavoso
{"title":"Insect Flight and Lipid Metabolism: Beyond the Classic Knowledge.","authors":"Leonardo L Fruttero, Jimena Leyria, Lilián E Canavoso","doi":"10.1007/5584_2024_849","DOIUrl":null,"url":null,"abstract":"<p><p>Insects are the most successful animal group by various ecological and evolutionary metrics, including species count, adaptation diversity, biomass, and environmental influence. This book delves into the underlying reasons behind insects' dominance on Earth. Lipids play pivotal roles in insect biology, serving as fuel for physiological processes, signaling molecules, and structural components of biomembranes and providing waterproofing against dehydration, among other functions. The study of insect flight has been instrumental in advancing our understanding of insect metabolism, with the migratory locust (Locusta migratoria) and the tobacco hornworm (Manduca sexta) serving as prominent models. Throughout the 1980s and 1990s, numerous studies shed light on the role of adipokinetic hormone (AKH), a crucial neuropeptide in lipid mobilization, to support the extraordinary energy demands of insect flight. Remarkably, AKH was the first identified peptide hormone in insects. These pioneering works linking lipids and flight laid the groundwork for subsequent research characterizing the physiological roles of other neuroendocrine factors in energy substrate mobilization across diverse insect species. However, in the omics era, one may be surprised by the limited understanding of the complex cascade of events governing lipid supply to insect flight muscles. Thus, this chapter aims to provide a concise overview of the evolutionary significance of insect flight, emphasizing key advancements that expand our classical knowledge in this field. Ultimately, we hope this chapter serves as a modest tribute to the pioneering researchers of one of the most captivating areas in insect biology, inspiring further exploration into the myriad roles of lipids in insect biology.</p>","PeriodicalId":7270,"journal":{"name":"Advances in experimental medicine and biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in experimental medicine and biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/5584_2024_849","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Insects are the most successful animal group by various ecological and evolutionary metrics, including species count, adaptation diversity, biomass, and environmental influence. This book delves into the underlying reasons behind insects' dominance on Earth. Lipids play pivotal roles in insect biology, serving as fuel for physiological processes, signaling molecules, and structural components of biomembranes and providing waterproofing against dehydration, among other functions. The study of insect flight has been instrumental in advancing our understanding of insect metabolism, with the migratory locust (Locusta migratoria) and the tobacco hornworm (Manduca sexta) serving as prominent models. Throughout the 1980s and 1990s, numerous studies shed light on the role of adipokinetic hormone (AKH), a crucial neuropeptide in lipid mobilization, to support the extraordinary energy demands of insect flight. Remarkably, AKH was the first identified peptide hormone in insects. These pioneering works linking lipids and flight laid the groundwork for subsequent research characterizing the physiological roles of other neuroendocrine factors in energy substrate mobilization across diverse insect species. However, in the omics era, one may be surprised by the limited understanding of the complex cascade of events governing lipid supply to insect flight muscles. Thus, this chapter aims to provide a concise overview of the evolutionary significance of insect flight, emphasizing key advancements that expand our classical knowledge in this field. Ultimately, we hope this chapter serves as a modest tribute to the pioneering researchers of one of the most captivating areas in insect biology, inspiring further exploration into the myriad roles of lipids in insect biology.
期刊介绍:
Advances in Experimental Medicine and Biology provides a platform for scientific contributions in the main disciplines of the biomedicine and the life sciences. This series publishes thematic volumes on contemporary research in the areas of microbiology, immunology, neurosciences, biochemistry, biomedical engineering, genetics, physiology, and cancer research. Covering emerging topics and techniques in basic and clinical science, it brings together clinicians and researchers from various fields.