Insect Flight and Lipid Metabolism: Beyond the Classic Knowledge.

4区 医学 Q2 Biochemistry, Genetics and Molecular Biology
Leonardo L Fruttero, Jimena Leyria, Lilián E Canavoso
{"title":"Insect Flight and Lipid Metabolism: Beyond the Classic Knowledge.","authors":"Leonardo L Fruttero, Jimena Leyria, Lilián E Canavoso","doi":"10.1007/5584_2024_849","DOIUrl":null,"url":null,"abstract":"<p><p>Insects are the most successful animal group by various ecological and evolutionary metrics, including species count, adaptation diversity, biomass, and environmental influence. This book delves into the underlying reasons behind insects' dominance on Earth. Lipids play pivotal roles in insect biology, serving as fuel for physiological processes, signaling molecules, and structural components of biomembranes and providing waterproofing against dehydration, among other functions. The study of insect flight has been instrumental in advancing our understanding of insect metabolism, with the migratory locust (Locusta migratoria) and the tobacco hornworm (Manduca sexta) serving as prominent models. Throughout the 1980s and 1990s, numerous studies shed light on the role of adipokinetic hormone (AKH), a crucial neuropeptide in lipid mobilization, to support the extraordinary energy demands of insect flight. Remarkably, AKH was the first identified peptide hormone in insects. These pioneering works linking lipids and flight laid the groundwork for subsequent research characterizing the physiological roles of other neuroendocrine factors in energy substrate mobilization across diverse insect species. However, in the omics era, one may be surprised by the limited understanding of the complex cascade of events governing lipid supply to insect flight muscles. Thus, this chapter aims to provide a concise overview of the evolutionary significance of insect flight, emphasizing key advancements that expand our classical knowledge in this field. Ultimately, we hope this chapter serves as a modest tribute to the pioneering researchers of one of the most captivating areas in insect biology, inspiring further exploration into the myriad roles of lipids in insect biology.</p>","PeriodicalId":7270,"journal":{"name":"Advances in experimental medicine and biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in experimental medicine and biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/5584_2024_849","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Insects are the most successful animal group by various ecological and evolutionary metrics, including species count, adaptation diversity, biomass, and environmental influence. This book delves into the underlying reasons behind insects' dominance on Earth. Lipids play pivotal roles in insect biology, serving as fuel for physiological processes, signaling molecules, and structural components of biomembranes and providing waterproofing against dehydration, among other functions. The study of insect flight has been instrumental in advancing our understanding of insect metabolism, with the migratory locust (Locusta migratoria) and the tobacco hornworm (Manduca sexta) serving as prominent models. Throughout the 1980s and 1990s, numerous studies shed light on the role of adipokinetic hormone (AKH), a crucial neuropeptide in lipid mobilization, to support the extraordinary energy demands of insect flight. Remarkably, AKH was the first identified peptide hormone in insects. These pioneering works linking lipids and flight laid the groundwork for subsequent research characterizing the physiological roles of other neuroendocrine factors in energy substrate mobilization across diverse insect species. However, in the omics era, one may be surprised by the limited understanding of the complex cascade of events governing lipid supply to insect flight muscles. Thus, this chapter aims to provide a concise overview of the evolutionary significance of insect flight, emphasizing key advancements that expand our classical knowledge in this field. Ultimately, we hope this chapter serves as a modest tribute to the pioneering researchers of one of the most captivating areas in insect biology, inspiring further exploration into the myriad roles of lipids in insect biology.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in experimental medicine and biology
Advances in experimental medicine and biology 医学-医学:研究与实验
CiteScore
5.90
自引率
0.00%
发文量
465
审稿时长
2-4 weeks
期刊介绍: Advances in Experimental Medicine and Biology provides a platform for scientific contributions in the main disciplines of the biomedicine and the life sciences. This series publishes thematic volumes on contemporary research in the areas of microbiology, immunology, neurosciences, biochemistry, biomedical engineering, genetics, physiology, and cancer research. Covering emerging topics and techniques in basic and clinical science, it brings together clinicians and researchers from various fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信