Plasmonic Nanocrystal-MOF Nanocomposites as Highly Active Photocatalysts and Highly Sensitive Sensors for CO2 Reduction over a Wide Range of Solar Wavelengths.

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Yen-Teng Chen, Nai-Wen Hsien, Su-Wen Hsu
{"title":"Plasmonic Nanocrystal-MOF Nanocomposites as Highly Active Photocatalysts and Highly Sensitive Sensors for CO<sub>2</sub> Reduction over a Wide Range of Solar Wavelengths.","authors":"Yen-Teng Chen, Nai-Wen Hsien, Su-Wen Hsu","doi":"10.1002/smtd.202500081","DOIUrl":null,"url":null,"abstract":"<p><p>Plasmonic nanocrystals have the potential to be widely used in green energy-related applications, due to their excellent optical properties and high reactivity over a wide range of solar wavelengths. Another benefit of using plasmonic nanocrystals for optical applications is that these nanocrystals strongly enhance Raman scattering and are therefore widely used in sensors. Recently, nanocomposites of porous materials deposited on plasmonic nanocrystals are demonstrated to enhance chemical reactivity by concentrating reactants on the surface of plasmonic nanocrystals. Here, three different plasmonic nanocrystals producing plasmonic responses within 400-900 nm are used as templates, and MOF-801 (Zr-based MOF) is produced on these nanocrystals as photocatalysts for the CO<sub>2</sub> reduction reaction. Using nanocomposites as CO<sub>2</sub> reduction reaction photocatalysts, the CO<sub>2</sub> conversion rate can reach >50% within 30 min. The CO<sub>2</sub> reduction reactivity of nanocomposites can be improved by the composition and morphology of plasmonic nanocrystals (increased by 40-50%), due to stronger synergistic effects and higher surface area to volume ratio. This report demonstrates that by controlling the plasmonic responses of nanocrystals, it is possible to realize photocatalysts that can be used for CO<sub>2</sub> reduction reactions over a wide range of solar wavelengths.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2500081"},"PeriodicalIF":10.7000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202500081","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Plasmonic nanocrystals have the potential to be widely used in green energy-related applications, due to their excellent optical properties and high reactivity over a wide range of solar wavelengths. Another benefit of using plasmonic nanocrystals for optical applications is that these nanocrystals strongly enhance Raman scattering and are therefore widely used in sensors. Recently, nanocomposites of porous materials deposited on plasmonic nanocrystals are demonstrated to enhance chemical reactivity by concentrating reactants on the surface of plasmonic nanocrystals. Here, three different plasmonic nanocrystals producing plasmonic responses within 400-900 nm are used as templates, and MOF-801 (Zr-based MOF) is produced on these nanocrystals as photocatalysts for the CO2 reduction reaction. Using nanocomposites as CO2 reduction reaction photocatalysts, the CO2 conversion rate can reach >50% within 30 min. The CO2 reduction reactivity of nanocomposites can be improved by the composition and morphology of plasmonic nanocrystals (increased by 40-50%), due to stronger synergistic effects and higher surface area to volume ratio. This report demonstrates that by controlling the plasmonic responses of nanocrystals, it is possible to realize photocatalysts that can be used for CO2 reduction reactions over a wide range of solar wavelengths.

等离子体纳米晶体- mof纳米复合材料在大太阳波长范围内作为高活性光催化剂和高灵敏度传感器用于二氧化碳还原。
等离子体纳米晶体由于其优异的光学性能和在太阳波长范围内的高反应性,在绿色能源相关应用中具有广泛应用的潜力。在光学应用中使用等离子体纳米晶体的另一个好处是,这些纳米晶体强烈增强拉曼散射,因此被广泛应用于传感器。最近,在等离子体纳米晶体上沉积多孔材料的纳米复合材料被证明可以通过将反应物集中在等离子体纳米晶体表面来增强化学反应性。本研究以三种不同的等离子体纳米晶体为模板,在400-900 nm范围内产生等离子体响应,并在这些纳米晶体上制备MOF-801 (zr基MOF)作为CO2还原反应的光催化剂。采用纳米复合材料作为CO2还原反应光催化剂,在30 min内CO2转化率可达到50 ~ 50%。等离子体纳米晶体的组成和形貌可以提高纳米复合材料的CO2还原反应活性(提高40 ~ 50%),这是因为纳米复合材料具有更强的协同效应和更高的表面积体积比。该报告表明,通过控制纳米晶体的等离子体响应,有可能实现可用于广泛太阳波长范围内的CO2还原反应的光催化剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信