Shengyao Lv, Jin Liu, Zhuoyang Xie, Li Li, Zidong Wei
{"title":"Atomic Layer Thickness Modulated the Catalytic Activity of Platinum for Oxygen Reduction and Hydrogen Oxidation Reaction.","authors":"Shengyao Lv, Jin Liu, Zhuoyang Xie, Li Li, Zidong Wei","doi":"10.1002/smtd.202401978","DOIUrl":null,"url":null,"abstract":"<p><p>Reducing platinum (Pt) usage and enhancing its catalytic performance in the hydrogen oxidation reaction (HOR) and the oxygen reduction reaction (ORR) are vital for advancing fuel cell technology. This study presents the design and investigation of monolayer and few-layer Pt structures with high platinum utilization, developed through theoretical calculations. By minimizing the metal thickness from 1 to 3 atomic layers, an atomic utilization rate ranging from 66.66% to 100% is achieved, in contrast to conventional multilayer Pt structures. This reduction resulted in a unique surface coordination environment. These thinner structures exhibited nonlinear fluctuations in key electronic characteristics-such as the d-band center, surface charge, and work function-as the atomic layer thickness decreased. These variations significantly impacted species adsorption and the Pt-H<sub>2</sub>O interfacial structure, which in turn affected the catalytic activity. Notably, 1-layer Pt exhibited the best performance for HOR, while 3-layer Pt showed high activity for both HOR and ORR. The findings establish a clear relationship between atomic layer thickness, surface characteristics, adsorption behavior, electric double-layer structure, and catalytic performance in Pt systems. This research contributes to a deeper understanding of precision atomic-structured electrocatalyst design and paves the way for the development of highly effective, low-loading Pt-based catalytic materials.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401978"},"PeriodicalIF":10.7000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202401978","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Reducing platinum (Pt) usage and enhancing its catalytic performance in the hydrogen oxidation reaction (HOR) and the oxygen reduction reaction (ORR) are vital for advancing fuel cell technology. This study presents the design and investigation of monolayer and few-layer Pt structures with high platinum utilization, developed through theoretical calculations. By minimizing the metal thickness from 1 to 3 atomic layers, an atomic utilization rate ranging from 66.66% to 100% is achieved, in contrast to conventional multilayer Pt structures. This reduction resulted in a unique surface coordination environment. These thinner structures exhibited nonlinear fluctuations in key electronic characteristics-such as the d-band center, surface charge, and work function-as the atomic layer thickness decreased. These variations significantly impacted species adsorption and the Pt-H2O interfacial structure, which in turn affected the catalytic activity. Notably, 1-layer Pt exhibited the best performance for HOR, while 3-layer Pt showed high activity for both HOR and ORR. The findings establish a clear relationship between atomic layer thickness, surface characteristics, adsorption behavior, electric double-layer structure, and catalytic performance in Pt systems. This research contributes to a deeper understanding of precision atomic-structured electrocatalyst design and paves the way for the development of highly effective, low-loading Pt-based catalytic materials.
Small MethodsMaterials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍:
Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques.
With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community.
The online ISSN for Small Methods is 2366-9608.