Composition-structure-property relationships of polyethylene vitrimers crosslinked by 8-arm polyhedral oligomeric silsesquioxane.

IF 2.9 3区 化学 Q3 CHEMISTRY, PHYSICAL
Soft Matter Pub Date : 2025-03-19 DOI:10.1039/d4sm01518e
Mikaela Sadri, Andrew Barbour, Travis L Thornell, J Kent Newman, Zhe Qiang
{"title":"Composition-structure-property relationships of polyethylene vitrimers crosslinked by 8-arm polyhedral oligomeric silsesquioxane.","authors":"Mikaela Sadri, Andrew Barbour, Travis L Thornell, J Kent Newman, Zhe Qiang","doi":"10.1039/d4sm01518e","DOIUrl":null,"url":null,"abstract":"<p><p>Transforming polyolefins (POs), such as polyethylene (PE), into vitrimers is a promising research field due to their low cost, high availability, and excellent chemical resistance and mechanical properties. In these systems, the introduction of dynamic crosslinking can affect the degree of crystallinity in POs and may lead to phase separation due to incompatibility between the PO matrix and crosslinking agents, both of which can impact mechanical performance. This study investigates the relationship between crystallinity, crosslinking, and thermal-mechanical properties in commodity PE-derived vitrimers utilizing reactive 8-arm polyhedral oligomeric silsesquioxane (POSS) nanoparticles by deconvoluting the crosslinked and non-crosslinked components. Specifically, the insoluble crosslinked components displayed a lower modulus and increased brittleness, while the non-crosslinked phase performed similarly to neat PE. Together, the PE-vitrimer, crosslinked with 8-arm POSS, exhibited reduced toughness, elongation at break, and a slight increase in ultimate tensile strength. These behaviors were consistent when comparing the crosslinking density and gel fraction with a bifunctional crosslinker analogue. This work demonstrates the influence of multi-arm, nanoparticle-based crosslinker content on the mechanical properties of semi-crystalline PO-vitrimers, elucidating the roles of network density and crystallinity in determining their performance.</p>","PeriodicalId":103,"journal":{"name":"Soft Matter","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Matter","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4sm01518e","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Transforming polyolefins (POs), such as polyethylene (PE), into vitrimers is a promising research field due to their low cost, high availability, and excellent chemical resistance and mechanical properties. In these systems, the introduction of dynamic crosslinking can affect the degree of crystallinity in POs and may lead to phase separation due to incompatibility between the PO matrix and crosslinking agents, both of which can impact mechanical performance. This study investigates the relationship between crystallinity, crosslinking, and thermal-mechanical properties in commodity PE-derived vitrimers utilizing reactive 8-arm polyhedral oligomeric silsesquioxane (POSS) nanoparticles by deconvoluting the crosslinked and non-crosslinked components. Specifically, the insoluble crosslinked components displayed a lower modulus and increased brittleness, while the non-crosslinked phase performed similarly to neat PE. Together, the PE-vitrimer, crosslinked with 8-arm POSS, exhibited reduced toughness, elongation at break, and a slight increase in ultimate tensile strength. These behaviors were consistent when comparing the crosslinking density and gel fraction with a bifunctional crosslinker analogue. This work demonstrates the influence of multi-arm, nanoparticle-based crosslinker content on the mechanical properties of semi-crystalline PO-vitrimers, elucidating the roles of network density and crystallinity in determining their performance.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Soft Matter
Soft Matter 工程技术-材料科学:综合
CiteScore
6.00
自引率
5.90%
发文量
891
审稿时长
1.9 months
期刊介绍: Soft Matter is an international journal published by the Royal Society of Chemistry using Engineering-Materials Science: A Synthesis as its research focus. It publishes original research articles, review articles, and synthesis articles related to this field, reporting the latest discoveries in the relevant theoretical, practical, and applied disciplines in a timely manner, and aims to promote the rapid exchange of scientific information in this subject area. The journal is an open access journal. The journal is an open access journal and has not been placed on the alert list in the last three years.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信