Dareuosh Shackebaei, Kheirollah Yari, Nader Rahimi, Sara Gorgani, Fatemeh Yarmohammadi
{"title":"Targeting the NLRP3 by Natural Compounds: Therapeutic Strategies to Mitigate Doxorubicin-Induced Cardiotoxicity.","authors":"Dareuosh Shackebaei, Kheirollah Yari, Nader Rahimi, Sara Gorgani, Fatemeh Yarmohammadi","doi":"10.1007/s12013-025-01723-4","DOIUrl":null,"url":null,"abstract":"<p><p>Doxorubicin (DOX), a widely utilized anthracycline chemotherapy agent, is known for its potent anticancer efficacy across various malignancies. However, its clinical use is considerably restricted due to the risk of dose-dependent cardiotoxicity, which can lead to long-term heart dysfunction. The underlying mechanism of DOX-induced cardiotoxicity has been associated with the formation of reactive oxygen species (ROS) and disrupting cellular signaling pathways. This is particularly relevant to the activation of the NLRP3 inflammasome, which triggers inflammation and pyroptosis in cardiac cells. In recent years, there has been growing interest in natural compounds that exhibit potential cardioprotective effects against the adverse cardiac effects of DOX. The present study showed that specific natural compounds, such as honokiol, resveratrol, cynaroside, and curcumin, can confer significant protection against DOX-induced cardiotoxicity through the modulation of NLRP3 inflammasome signaling pathways. In summary, incorporating natural compounds into treatment plans could be a practical approach to improve the safety profile of DOX, thereby protecting cardiac health through the regulation of the NLRP3 pathway.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biochemistry and Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12013-025-01723-4","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Doxorubicin (DOX), a widely utilized anthracycline chemotherapy agent, is known for its potent anticancer efficacy across various malignancies. However, its clinical use is considerably restricted due to the risk of dose-dependent cardiotoxicity, which can lead to long-term heart dysfunction. The underlying mechanism of DOX-induced cardiotoxicity has been associated with the formation of reactive oxygen species (ROS) and disrupting cellular signaling pathways. This is particularly relevant to the activation of the NLRP3 inflammasome, which triggers inflammation and pyroptosis in cardiac cells. In recent years, there has been growing interest in natural compounds that exhibit potential cardioprotective effects against the adverse cardiac effects of DOX. The present study showed that specific natural compounds, such as honokiol, resveratrol, cynaroside, and curcumin, can confer significant protection against DOX-induced cardiotoxicity through the modulation of NLRP3 inflammasome signaling pathways. In summary, incorporating natural compounds into treatment plans could be a practical approach to improve the safety profile of DOX, thereby protecting cardiac health through the regulation of the NLRP3 pathway.
期刊介绍:
Cell Biochemistry and Biophysics (CBB) aims to publish papers on the nature of the biochemical and biophysical mechanisms underlying the structure, control and function of cellular systems
The reports should be within the framework of modern biochemistry and chemistry, biophysics and cell physiology, physics and engineering, molecular and structural biology. The relationship between molecular structure and function under investigation is emphasized.
Examples of subject areas that CBB publishes are:
· biochemical and biophysical aspects of cell structure and function;
· interactions of cells and their molecular/macromolecular constituents;
· innovative developments in genetic and biomolecular engineering;
· computer-based analysis of tissues, cells, cell networks, organelles, and molecular/macromolecular assemblies;
· photometric, spectroscopic, microscopic, mechanical, and electrical methodologies/techniques in analytical cytology, cytometry and innovative instrument design
For articles that focus on computational aspects, authors should be clear about which docking and molecular dynamics algorithms or software packages are being used as well as details on the system parameterization, simulations conditions etc. In addition, docking calculations (virtual screening, QSAR, etc.) should be validated either by experimental studies or one or more reliable theoretical cross-validation methods.