Ming-Qiang Chu, Ting-Juan Zhang, Zi-Qi Liu, Qian Yang, Ting-Ting Du, Min-Jie Zhang, Ye Jin, Yong-Jie Cao, Xiang-Mei Wen, Zi-Jun Xu, Yang-Jing Zhao, Jiang Lin, Jun Qian, Jing-Dong Zhou
{"title":"MiR-218 Exhibits Anti-Leukemia Effects by Targeting CTNND2 in Primary Acute Erythroid Leukemia HEL Cells.","authors":"Ming-Qiang Chu, Ting-Juan Zhang, Zi-Qi Liu, Qian Yang, Ting-Ting Du, Min-Jie Zhang, Ye Jin, Yong-Jie Cao, Xiang-Mei Wen, Zi-Jun Xu, Yang-Jing Zhao, Jiang Lin, Jun Qian, Jing-Dong Zhou","doi":"10.1007/s12013-025-01722-5","DOIUrl":null,"url":null,"abstract":"<p><p>Acute erythroid leukemia (AEL) is a rare acute myeloid leukemia (AML) subtype that is highly aggressive and is associated with a poor prognosis. Notably, the blockage of erythroid differentiation represents a significant factor in the pathogenesis of erythroleukemia. Prior studies indicated that miR-218 inhibited the erythroid differentiation in a chronic myeloid leukemia (CML)-derived erythroleukemia cell line K562. However, functions of miR-218 in primary AEL remains to be elucidated. To address this gap, functions of miR-218 in HEL cells were evaluated through cell differentiation, cell proliferation, colony formation, cell cycle and cell apoptosis experiments. Subsequently, the targeted downstream genes of miR-218 were identified by the transcriptome sequencing and bioinformatic research, of which demonstrated by the dual-luciferase reporter experiment. Finally, the underlying mechanism of miR-218 in leukemogenesis was identified by enrichment analysis and was validated by western blot (WB) assays. Intriguingly, enhanced miR-218 showed no effect on the erythroid differentiation in HEL cells by determination of the expression of erythroid markers including GATA1, KLF1, TFRC and GYPA. However, miR-218 overexpression in HEL cells presented a markedly anti-proliferative and pro-apoptotic effects, inhibited colony formation and G0/G1 arrest. Transcriptome sequencing and bioinformatics analysis revealed that CTNND2 as the candidate gene of miR-218 within its 3'-untranslated region (3'-UTR) could be bonded by it. Reduced expression level of CTNND2 was further demonstrated by quantitative-PCR and WB after miR-218 overexpression in HEL cells. Furthermore, the luciferase report assay revealed that the CTNND2 production was reduced with its 3'-UTR region was bonded by miR-218. In addition, MAPK signaling pathway was identified and validated as the potential functional pathway involved in leukemogenesis caused by miR-218 overexpression in HEL cells. In summary, miR-218 exhibits anti-proliferative and pro-apoptotic functions by targeting CTNND2 and modulating MAPK signaling in HEL cells, yet it has no impact on the erythroid differentiation process.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biochemistry and Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12013-025-01722-5","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Acute erythroid leukemia (AEL) is a rare acute myeloid leukemia (AML) subtype that is highly aggressive and is associated with a poor prognosis. Notably, the blockage of erythroid differentiation represents a significant factor in the pathogenesis of erythroleukemia. Prior studies indicated that miR-218 inhibited the erythroid differentiation in a chronic myeloid leukemia (CML)-derived erythroleukemia cell line K562. However, functions of miR-218 in primary AEL remains to be elucidated. To address this gap, functions of miR-218 in HEL cells were evaluated through cell differentiation, cell proliferation, colony formation, cell cycle and cell apoptosis experiments. Subsequently, the targeted downstream genes of miR-218 were identified by the transcriptome sequencing and bioinformatic research, of which demonstrated by the dual-luciferase reporter experiment. Finally, the underlying mechanism of miR-218 in leukemogenesis was identified by enrichment analysis and was validated by western blot (WB) assays. Intriguingly, enhanced miR-218 showed no effect on the erythroid differentiation in HEL cells by determination of the expression of erythroid markers including GATA1, KLF1, TFRC and GYPA. However, miR-218 overexpression in HEL cells presented a markedly anti-proliferative and pro-apoptotic effects, inhibited colony formation and G0/G1 arrest. Transcriptome sequencing and bioinformatics analysis revealed that CTNND2 as the candidate gene of miR-218 within its 3'-untranslated region (3'-UTR) could be bonded by it. Reduced expression level of CTNND2 was further demonstrated by quantitative-PCR and WB after miR-218 overexpression in HEL cells. Furthermore, the luciferase report assay revealed that the CTNND2 production was reduced with its 3'-UTR region was bonded by miR-218. In addition, MAPK signaling pathway was identified and validated as the potential functional pathway involved in leukemogenesis caused by miR-218 overexpression in HEL cells. In summary, miR-218 exhibits anti-proliferative and pro-apoptotic functions by targeting CTNND2 and modulating MAPK signaling in HEL cells, yet it has no impact on the erythroid differentiation process.
期刊介绍:
Cell Biochemistry and Biophysics (CBB) aims to publish papers on the nature of the biochemical and biophysical mechanisms underlying the structure, control and function of cellular systems
The reports should be within the framework of modern biochemistry and chemistry, biophysics and cell physiology, physics and engineering, molecular and structural biology. The relationship between molecular structure and function under investigation is emphasized.
Examples of subject areas that CBB publishes are:
· biochemical and biophysical aspects of cell structure and function;
· interactions of cells and their molecular/macromolecular constituents;
· innovative developments in genetic and biomolecular engineering;
· computer-based analysis of tissues, cells, cell networks, organelles, and molecular/macromolecular assemblies;
· photometric, spectroscopic, microscopic, mechanical, and electrical methodologies/techniques in analytical cytology, cytometry and innovative instrument design
For articles that focus on computational aspects, authors should be clear about which docking and molecular dynamics algorithms or software packages are being used as well as details on the system parameterization, simulations conditions etc. In addition, docking calculations (virtual screening, QSAR, etc.) should be validated either by experimental studies or one or more reliable theoretical cross-validation methods.