Haylee R Hammond, Prakash Chaudhari, Ashley Bunnell, Khadija Nefzi, Chongguang Chen, Pingwei Zhao, Shainnel O Eans, Sabrina R Masood, Colette T Dooley, Lee-Yuan Liu-Chen, Jay P McLaughlin, Adel Nefzi
{"title":"Peripherally Restricted Fused Heterocyclic Peptidomimetic Multifunctional Opioid Agonists as Novel, Potent Analgesics.","authors":"Haylee R Hammond, Prakash Chaudhari, Ashley Bunnell, Khadija Nefzi, Chongguang Chen, Pingwei Zhao, Shainnel O Eans, Sabrina R Masood, Colette T Dooley, Lee-Yuan Liu-Chen, Jay P McLaughlin, Adel Nefzi","doi":"10.1021/acsmedchemlett.4c00333","DOIUrl":null,"url":null,"abstract":"<p><p>Heterocyclic peptidomimetics are constrained compounds that mimic the biological efficacy of peptides while offering increased stability. We have previously generated a diazaheterocyclic peripherally selective, mixed-opioid agonist peptidomimetic that produced synergistic antinociception with decreased side effects. Working from two earlier templates, we report here the synthesis of 15 new diazaheterocyclic analogues. In vitro screening with radioligand competition binding assays and [<sup>35</sup>S]GTPγS assays demonstrated variable affinity for and activity at μ (MOR), δ (DOR), and κ (KOR) opioid receptors across the series, with three (<b>2663</b>-<b>48</b>, <b>2638</b>-<b>28</b> and <b>2638</b>-<b>33</b>) displaying good affinity for DOR and/or KOR. All three compounds produced dose-dependent, opioid-receptor mediated antinociception in the mouse 55 °C warm-water tail-withdrawal and acetic-acid writhing assay, although a ratio of ED<sub>50</sub> values in these assays suggested poor BBB penetration by <b>2638</b>-<b>33</b>; results confirmed by testing with naloxone-methiodide. The data suggest these diazaheterocyclic mixed-activity, peripherally restricted opioid receptor agonists may hold potential as new, safer analgesics.</p>","PeriodicalId":20,"journal":{"name":"ACS Medicinal Chemistry Letters","volume":"16 3","pages":"388-396"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11912268/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Medicinal Chemistry Letters","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acsmedchemlett.4c00333","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/13 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Heterocyclic peptidomimetics are constrained compounds that mimic the biological efficacy of peptides while offering increased stability. We have previously generated a diazaheterocyclic peripherally selective, mixed-opioid agonist peptidomimetic that produced synergistic antinociception with decreased side effects. Working from two earlier templates, we report here the synthesis of 15 new diazaheterocyclic analogues. In vitro screening with radioligand competition binding assays and [35S]GTPγS assays demonstrated variable affinity for and activity at μ (MOR), δ (DOR), and κ (KOR) opioid receptors across the series, with three (2663-48, 2638-28 and 2638-33) displaying good affinity for DOR and/or KOR. All three compounds produced dose-dependent, opioid-receptor mediated antinociception in the mouse 55 °C warm-water tail-withdrawal and acetic-acid writhing assay, although a ratio of ED50 values in these assays suggested poor BBB penetration by 2638-33; results confirmed by testing with naloxone-methiodide. The data suggest these diazaheterocyclic mixed-activity, peripherally restricted opioid receptor agonists may hold potential as new, safer analgesics.
期刊介绍:
ACS Medicinal Chemistry Letters is interested in receiving manuscripts that discuss various aspects of medicinal chemistry. The journal will publish studies that pertain to a broad range of subject matter, including compound design and optimization, biological evaluation, drug delivery, imaging agents, and pharmacology of both small and large bioactive molecules. Specific areas include but are not limited to:
Identification, synthesis, and optimization of lead biologically active molecules and drugs (small molecules and biologics)
Biological characterization of new molecular entities in the context of drug discovery
Computational, cheminformatics, and structural studies for the identification or SAR analysis of bioactive molecules, ligands and their targets, etc.
Novel and improved methodologies, including radiation biochemistry, with broad application to medicinal chemistry
Discovery technologies for biologically active molecules from both synthetic and natural (plant and other) sources
Pharmacokinetic/pharmacodynamic studies that address mechanisms underlying drug disposition and response
Pharmacogenetic and pharmacogenomic studies used to enhance drug design and the translation of medicinal chemistry into the clinic
Mechanistic drug metabolism and regulation of metabolic enzyme gene expression
Chemistry patents relevant to the medicinal chemistry field.