DSD1/ZmICEb regulates stomatal development and drought tolerance in maize.

IF 9.3 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Wenqi Zhou, Jun Yin, Yuqian Zhou, Yongsheng Li, Haijun He, Yanzhong Yang, Xiaojuan Wang, Xiaorong Lian, Xiaoyun Dong, Zengke Ma, Liang Chen, Suiwen Hou
{"title":"DSD1/ZmICEb regulates stomatal development and drought tolerance in maize.","authors":"Wenqi Zhou, Jun Yin, Yuqian Zhou, Yongsheng Li, Haijun He, Yanzhong Yang, Xiaojuan Wang, Xiaorong Lian, Xiaoyun Dong, Zengke Ma, Liang Chen, Suiwen Hou","doi":"10.1111/jipb.13890","DOIUrl":null,"url":null,"abstract":"<p><p>Maize (Zea mays L.) growth and yield are severely limited by drought stress worldwide. Stomata play crucial roles in transpiration and gas exchange and are thus essential for improving plant water-use efficiency (WUE) to help plants deal with the threat of drought. In this study, we characterized the maize dsd1 (decreased stomatal density 1) mutant, which showed defects in stomatal development, including guard mother cell differentiation, subsidiary cell formation and guard cell maturation. DSD1 encodes the basic helix-loop-helix transcription factor INDUCER OF CBF EXPRESSION b (ZmICEb) and is a homolog of ICE1 in Arabidopsis (Arabidopsis thaliana). DSD1/ZmICEb is expressed in stomatal file cells throughout stomatal development and plays a conserved role in stomatal development across maize and Arabidopsis. Mutations in DSD1/ZmICEb dramatically improved drought tolerance and WUE in maize and reduced yield losses under drought conditions. Therefore, DSD1/ZmICEb represents a promising candidate target gene for the genetic improvement of drought tolerance in maize by manipulating stomatal density.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":" ","pages":""},"PeriodicalIF":9.3000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrative Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/jipb.13890","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Maize (Zea mays L.) growth and yield are severely limited by drought stress worldwide. Stomata play crucial roles in transpiration and gas exchange and are thus essential for improving plant water-use efficiency (WUE) to help plants deal with the threat of drought. In this study, we characterized the maize dsd1 (decreased stomatal density 1) mutant, which showed defects in stomatal development, including guard mother cell differentiation, subsidiary cell formation and guard cell maturation. DSD1 encodes the basic helix-loop-helix transcription factor INDUCER OF CBF EXPRESSION b (ZmICEb) and is a homolog of ICE1 in Arabidopsis (Arabidopsis thaliana). DSD1/ZmICEb is expressed in stomatal file cells throughout stomatal development and plays a conserved role in stomatal development across maize and Arabidopsis. Mutations in DSD1/ZmICEb dramatically improved drought tolerance and WUE in maize and reduced yield losses under drought conditions. Therefore, DSD1/ZmICEb represents a promising candidate target gene for the genetic improvement of drought tolerance in maize by manipulating stomatal density.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Integrative Plant Biology
Journal of Integrative Plant Biology 生物-生化与分子生物学
CiteScore
18.00
自引率
5.30%
发文量
220
审稿时长
3 months
期刊介绍: Journal of Integrative Plant Biology is a leading academic journal reporting on the latest discoveries in plant biology.Enjoy the latest news and developments in the field, understand new and improved methods and research tools, and explore basic biological questions through reproducible experimental design, using genetic, biochemical, cell and molecular biological methods, and statistical analyses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信