A Light-Activatable Nitric Oxide Donor for Targeted Glaucoma Therapy with Real-Time Monitoring Capabilities.

IF 10 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Jiamin Liu, Yankun Lu, Yi Tian, Qian Liu, Xinghua Sun, Yi Liu, Yuan Lei
{"title":"A Light-Activatable Nitric Oxide Donor for Targeted Glaucoma Therapy with Real-Time Monitoring Capabilities.","authors":"Jiamin Liu, Yankun Lu, Yi Tian, Qian Liu, Xinghua Sun, Yi Liu, Yuan Lei","doi":"10.1002/adhm.202404221","DOIUrl":null,"url":null,"abstract":"<p><p>Primary open-angle glaucoma (POAG), the most common form of glaucoma, is characterized by a gradual increase in intraocular pressure (IOP). Nitric oxide (NO) donors are promising treatments for POAG, but their effectiveness requires selective NO release triggered by ocular-relevant stimuli. RhNO-Ab, a visible light-activatable NO donor and fluorescent probe is introduced. RhNO-Ab releases NO from its N-nitroso group and transforms from a non-fluorescent spirolactone to fluorescent Rhodamine (Rh) upon NO release. In vitro studies, including in bulk and single molecule level demonstrated a rapid NO release and fluorescence recovery upon light irradiation. Immunofluorescence shows enhanced delivery to target tissues of RhNO-Ab with ABCA1 antibody modification. Administration of RhNO-Ab with light at 30, 20, and 10 µm significantly reduces IOP in NOS3 KO mice by 2.11 mmHg (12.50%, n = 6), 1.77 mmHg (9.88%, n = 6), and 1.55 mmHg (8.23%, n = 6) 3 h post-treatment (<sup>*</sup>p < 0.05). RhNO-Ab with light also reduces transendothelial electrical resistance (TEER) in Schlemm's canal (SC) endothelial cells (n = 3, <sup>*</sup>p < 0.05) and upregulates soluble guanylate cyclase (sGC) mRNA and protein expression in mouse outflow tissues and human trabecular meshwork (HTM) cells. Unlike traditional NO donors, RhNO-Ab offers visible light-triggered therapeutic NO release and real-time monitoring, making it a promising novel strategy for POAG treatment.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2404221"},"PeriodicalIF":10.0000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adhm.202404221","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Primary open-angle glaucoma (POAG), the most common form of glaucoma, is characterized by a gradual increase in intraocular pressure (IOP). Nitric oxide (NO) donors are promising treatments for POAG, but their effectiveness requires selective NO release triggered by ocular-relevant stimuli. RhNO-Ab, a visible light-activatable NO donor and fluorescent probe is introduced. RhNO-Ab releases NO from its N-nitroso group and transforms from a non-fluorescent spirolactone to fluorescent Rhodamine (Rh) upon NO release. In vitro studies, including in bulk and single molecule level demonstrated a rapid NO release and fluorescence recovery upon light irradiation. Immunofluorescence shows enhanced delivery to target tissues of RhNO-Ab with ABCA1 antibody modification. Administration of RhNO-Ab with light at 30, 20, and 10 µm significantly reduces IOP in NOS3 KO mice by 2.11 mmHg (12.50%, n = 6), 1.77 mmHg (9.88%, n = 6), and 1.55 mmHg (8.23%, n = 6) 3 h post-treatment (*p < 0.05). RhNO-Ab with light also reduces transendothelial electrical resistance (TEER) in Schlemm's canal (SC) endothelial cells (n = 3, *p < 0.05) and upregulates soluble guanylate cyclase (sGC) mRNA and protein expression in mouse outflow tissues and human trabecular meshwork (HTM) cells. Unlike traditional NO donors, RhNO-Ab offers visible light-triggered therapeutic NO release and real-time monitoring, making it a promising novel strategy for POAG treatment.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Healthcare Materials
Advanced Healthcare Materials 工程技术-生物材料
CiteScore
14.40
自引率
3.00%
发文量
600
审稿时长
1.8 months
期刊介绍: Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信